高级搜索

术前血小板与淋巴细胞比值和中性粒细胞与淋巴细胞比值对食管癌预后的预测价值

张思思, 袁耒

张思思, 袁耒. 术前血小板与淋巴细胞比值和中性粒细胞与淋巴细胞比值对食管癌预后的预测价值[J]. 肿瘤防治研究, 2017, 44(12): 811-815. DOI: 10.3971/j.issn.1000-8578.2017.17.0547
引用本文: 张思思, 袁耒. 术前血小板与淋巴细胞比值和中性粒细胞与淋巴细胞比值对食管癌预后的预测价值[J]. 肿瘤防治研究, 2017, 44(12): 811-815. DOI: 10.3971/j.issn.1000-8578.2017.17.0547
ZHANG Sisi, YUAN Lei. Preoperative Platelet-to-lymphocyte Ratio and Neutrophil-to-lymphocyte Ratio for Predicting Prognosis of Esophageal Cancer Patients[J]. Cancer Research on Prevention and Treatment, 2017, 44(12): 811-815. DOI: 10.3971/j.issn.1000-8578.2017.17.0547
Citation: ZHANG Sisi, YUAN Lei. Preoperative Platelet-to-lymphocyte Ratio and Neutrophil-to-lymphocyte Ratio for Predicting Prognosis of Esophageal Cancer Patients[J]. Cancer Research on Prevention and Treatment, 2017, 44(12): 811-815. DOI: 10.3971/j.issn.1000-8578.2017.17.0547

术前血小板与淋巴细胞比值和中性粒细胞与淋巴细胞比值对食管癌预后的预测价值

详细信息
    作者简介:

    张思思(1992-),女,硕士在读,主要从事肺癌的基础及临床研究

    通讯作者:

    袁耒, E-mail: m13853160155@163.com

  • 中图分类号: R735.1

Preoperative Platelet-to-lymphocyte Ratio and Neutrophil-to-lymphocyte Ratio for Predicting Prognosis of Esophageal Cancer Patients

More Information
  • 摘要:
    目的 

    探讨术前外周血血小板与淋巴细胞比值(PLR)和中性粒细胞与淋巴细胞比值(NLR)对食管癌患者预后的预测价值。

    方法 

    回顾性分析137例行食管癌根治切除术治疗的患者的临床资料。按术前PLR<120及≥120、NLR<2.0及≥2.0分组,采用Kaplan-Meier曲线法进行生存分析,比较5年无病生存率和总生存率。采用Cox多因素分析确定影响预后的独立因素。

    结果 

    高PLR组的5年总生存率30.9%和无病生存率30.9%分别低于低PLR组的50.7%和47.8%(P=0.017, P=0.033)。同样,高NLR组的5年总生存率29.0%和无病生存率29.0%显著低于低NLR组的52.9%和50.0%(P=0.003, P=0.006)。多因素分析显示,分化程度、临床分期和NLR是影响食管癌患者预后的独立因素(均P<0.05)。

    结论 

    PLR和NLR可以预测食管癌患者的预后,NLR还可作为影响患者预后的独立因素。

     

    Abstract:
    Objective 

    To investigate the prognostic value of the preoperative platelet-to-lymphocyte ratio (PLR) and the neutrophil-to-lymphocyte ratio (NLR) collected from peripheral blood of esophageal cancer (EC) patients.

    Methods 

    The clinical data of 137 patients who underwent esophagectomy from January 2010 to December 2011 were analyzed retrospectively. According to preoperative PLR and NLR, the patients were divided into low PLR group (PLR < 120) and high PLR group (PLR≥120) or low NLR group (PLR < 120) and high PLR group (PLR≥120). Disease free survival (DFS) and overall survival (OS) were assessed using Kaplan-Meier method. The prognostic significance of both markers was then determined by both univariate and multivariate analytical methods.

    Results 

    The high PLR group had a much lower 5-year OS compared with the low PLR group (30.9% vs. 50.7%, P=0.017) as well as DFS (30.9% vs. 47.8%, P=0.033). The high NLR group had a much lower 5-year OS compared with the low NLR group (29.0% vs. 52.9%, P=0003) as well as DFS (29.0% vs. 50.0%, P=0.006). Multivariate analysis revealed that the differentiation, clinical stage and NLR were identified as independent risk factors for poor prognosis of EC patients.

    Conclusion 

    PLR and NLR might predict the prognosis of EC patients. NLR could be an independent predictive factor for EC.

     

  • 晚期肺癌患者5年生存率仅5%,但若能在早期诊断并治疗,5年存活率可达57%[1-2]。因此,结合肺癌危险因素及其临床特征建立肺癌危险度预测模型对早期诊断及治疗肺癌,提高患者5年生存率具有重要意义。近年来,数据挖掘技术已经在生物医学预测模型中得到广泛应用。人工神经网络(artificial neural network, ANN)具有良好的鲁棒性、高容错性和较强的归纳能力,而C5.0算法作为决策树模型的常用算法之一,适用于分类变量和大数据集[3]。因此,该研究拟将肺癌常见危险因素与临床症状相结合,采用C5.0决策树与ANN构建肺癌危险度预测模型,并评价两模型的性能优劣,为肺癌早期筛查及临床辅助诊断提供依据和工具。

    收集2014年10月至2016年10月郑州大学第一附属医院的住院患者样本420例,其中包括肺癌患者180例,肺良性疾病患者240例。入组患者均知情同意并自愿参加。

    入选标准:肺癌组:以《中华医学会肺癌临床诊疗指南(2019版)》为标准[4],经病理学或细胞学被证实为原发性肺癌患者;肺良性疾病组:由郑州大学第一附属医院诊断为肺部良性病变患者。排除标准:(1)入组前曾接受放化疗、药物治疗或手术治疗者;(2)主要脏器功能衰竭患者;(3)合并肺或其他恶性肿瘤患者;(4)妊娠或哺乳期患者;(5)不同意入组者。

    调查人员经过统一培训后,通过问卷访谈形式对患者进行调查询问获得数据资料,包括流行病学资料(疾病诊断、年龄、吸烟史、饮酒史、粉尘接触史、输血史、肺癌家族史、炎性反应史)和临床症状(咳嗽、咳痰、痰中带血、咯血、胸闷、胸痛、心慌、乏力、畏寒、发热出汗)。其中年龄根据《中华医学会肺癌临床诊疗指南(2019版)》以45岁为界限进行分组。总数据集包括18个定性变量(17个预测变量和1个因变量),因变量为诊断结果,各变量赋值见表 1

    表  1  肺癌危险度评价研究的变量赋值说明
    Table  1  Instructions of variables assignment in risk assessment studies of lung cancer
    下载: 导出CSV 
    | 显示表格

    应用SPSS21.0对420例样本数据进行统计分析,对所有变量进行描述性统计分析,采用χ2检验进行差异分析,检验水准α=0.05。

    使用SPSS Clementine 12.0软件建立两种数据挖掘预测模型,使用MedCalc15.10软件绘制受试者工作特征(receiver operating characteristic curve, ROC)曲线。将两组样本均按照7:3随机分为两部分,其中训练数据集包含302例样本,测试数据集包含118例样本。C5.0决策树模型和ANN模型的比较采用敏感度、特异性、准确度、阳性预测值(positive predictive values, PPV)、阴性预测值(positive and negative predictive values, NPV)、约登指数和ROC曲线下面积(area under ROC curve, AUC)进行评估。

    420例患者中,肺癌患者180例(42.9%),肺良性疾病患者240例(57.1%)。肺良性疾病患者中小于45岁者(63.8%)明显多于肺癌组(36.2%),差异有统计学意义(P=0.004)。肺癌患者中吸烟、饮酒者(57.1%、55.7%)均多于肺良性疾病患者(42.9%、44.3%)。肺癌组有粉尘接触史或肺癌家族史者分别仅2例。肺良性疾病组中有6例有输血史,而肺癌组中没有。10个临床症状变量中,肺癌组中痰中带血(64.0%)及胸痛(55.3%)的比例高于肺良性疾病患者(36.0%、44.7%)。两组样本的基线特征分析结果见表 2

    表  2  肺癌组和肺良性疾病组的样本基线特征及卡方检验(n(%))
    Table  2  Baseline characteristics and chi-square test of lung cancer and lung benign disease groups (n(%))
    下载: 导出CSV 
    | 显示表格

    两组间年龄(P=0.004)、吸烟史(P < 0.001)、饮酒史(P=0.028)、输血史(P=0.033)、炎症史(P < 0.001)、痰中带血(P=0.001)、胸痛(P=0.006)、乏力(P=0.049)和发热出汗(P < 0.001)9个因素差异有统计学意义,见表 2。此外由于既往研究提示粉尘接触史、癌症家族史、咳痰、咳嗽和咯血为肺癌的影响因素[4-5],该研究入选这14个因素作为输入变量建立风险预测模型。

    经过训练,C5.0决策树风险预测模型的参数设置如下:Use partitioned data: no, Output type: Decision Tree, Group symbolic: no, Use boosting: yes, Cross-validate: no, Mode: expert, Pruning severity: 75, Minimum records per child brunch: 2, Use global pruning: yes, Window attributes: no, Use misclassification costs: no。ANN风险预测模型的参数设置如下:Use partitioned data: yes, Method: prune, Prevent overtraining sample: 50%, Set random seed: 321, Stop on: time (mins) 1 min, Optimize: memory, Continue training existing model: no; Use binary set encoding: yes, Show feedback graph: yes, Model selection: Use best network, Mode: expert。

    两种模型训练集和测试集样本的分类结果见表 3。在训练集与测试集样本中C5.0模型的准确率分别为68.54%和61.0%,ANN模型的准确率分别为69.5%和65.3%。可以看出ANN模型在训练集和预测集中准确度均高于C5.0模型。根据两个数据挖掘模型的ROC曲线中各危险因素对应的AUC评估各自变量对模型的影响大小,重要性前10位影响因素排序见表 4。由表可知,对模型影响最大的三个影响因素在ANN模型中分别是吸烟史、痰中带血与胸痛;而在C5.0模型中分别是吸烟史、胸痛与年龄。在ANN模型和C5.0模型中吸烟均为最主要的影响因素。

    表  3  C5.0决策树和ANN模型的训练集和测试集样本分类结果
    Table  3  Classification results of training set and testing set samples by Decision tree C5.0 and ANN models
    下载: 导出CSV 
    | 显示表格
    表  4  C5.0决策树模型和ANN模型中纳入变量的重要性排序
    Table  4  Importance ranking of variables in Decision tree C5.0 model and ANN model
    下载: 导出CSV 
    | 显示表格

    两种数据挖掘模型对肺癌综合预测性能的相关指标包括准确度、约登指数、敏感度、特异性、预测值和AUC。其中C5.0决策树模型的特异性和NPV高于ANN模型,ANN模型预测模型的准确度、约登指数、敏感度、PPV和AUC均高于C5.0决策树模型,见表 5。测试集中两种数据挖掘模型的ROC曲线可发现ANN模型预测性能优于C5.0决策树模型,见图 1

    表  5  两种数据挖掘模型的测试集结果比较
    Table  5  Comparison of testing set results between two data mining models
    下载: 导出CSV 
    | 显示表格
    图  1  测试集中两种数据挖掘模型的ROC曲线
    Figure  1  ROC curves of two data mining models in testing set

    当前,肺癌的高发病率和高病死率已经造成巨大的公共卫生负担,利用肺癌的危险因素来预测肺癌危险度,对于肺癌的预防和早期筛查具有重要意义。本研究分别建立了C5.0决策树与ANN肺癌风险预测模型,比较发现,ANN模型预测性能优于C5.0决策树模型。

    本研究按照0.05的显著性水平,单因素检验发现有9个变量与肺癌患病率呈相关关系:5个流行病学变量中年龄、吸烟史、饮酒史、炎性反应史与肺癌患病率呈正相关,输血史与肺癌患病率呈负相关;4个临床症状中痰中带血、胸痛与肺癌患病率正相关,乏力和发热出汗与肺癌患病率存在负相关关系。同时,本研究的两种数据挖掘模型中吸烟均为关键影响变量。既往研究表明肺癌常见于70岁以上人群且发病率和死亡率随年龄增加而升高,同时吸烟、饮酒以及慢性炎性反应均为肺癌的危险因素之一[5],而围手术期输血对肺癌预后和复发的影响当前研究仍不一致[6],这与本研究结果基本相符。有研究显示,遗传因素与职业性粉尘接触也是肺癌的危险因素之一[7],这与本研究结果不符。

    决策树模型是一种由层次分类逐步构建的贪心算法,作为一种新兴的数据挖掘技术,它可以经过多次迭代演算后得到最优化的算法模型,具有较高的数据分析能力。相关研究已经将C5.0决策树模型用于利用基因表达数据和职业危险因素预测肺癌风险的模型建立[8-10]。C5.0算法作为决策树模型的常用算法之一,适用于分类变量和大数据集,已经在生物医学预测模型的建立中得到广泛应用。另外一些研究将C5.0决策树模型与其他多种研究进行比较,建立疾病风险预测模型,均得到C5.0决策树模型的预测性能最优的结果[11-12]

    ANN模型的数学结构模拟人类大脑的生物神经元学习动态,对输入变量经过训练产生一个加权组合的输出结果。ANN相比于一般统计学方法优势显著,具有良好的鲁棒性、高容错性和较强的归纳能力,可以快速识别线性模型、受阈值影响的非线性模型、分类模型、逐步线性模型,甚至偶然影响,故其可以确定潜在的预后影响因素[13]。已有研究将ANN应用于肺癌风险评估相关模型的构建[3, 14]。该研究结果同样显示ANN模型在准确度、敏感度、约登指数、阳性预测值、ROC曲线下面积均优于决策树模型[15-16],这与相关研究结果一致。因此,本研究建议利用ANN模型结合人群的流行病学资料和临床症状判别肺癌高危人群,为肺癌的早期诊断早期治疗提供参考依据[17]

    本研究仍然存在一定的局限性:一方面,纳入的样本量较少,如果能收集更大样本量和多中心样本资料,样本数据将具有更好的代表性,模型将具有更优异的性能;另一方面,纳入的变量种类有限,而与肺癌相关的危险因素众多且对肺癌存在交互作用,如果能纳入环境因素、职业因素、遗传因素、行为生活方式等多种研究变量,模型将更为准确可靠。因此,我们建议未来的研究应涵盖更大的样本量,纳入更为丰富的研究变量进行综合分析,同时将ANN模型应用于肺癌高危人群中筛查验证。

  • 图  1   食管癌患者不同PLR和NLR分组的生存曲线

    Figure  1   Cumulative OS or DFS curves of esophageal cancer patients with different PLR and NLR

    表  1   食管癌患者不同PLR和NLR组的临床病理特征比较(n(%))

    Table  1   Comparison of clinicopathological factors between esophageal cancer patients with different PLR and NLR (n(%))

    下载: 导出CSV

    表  2   食管癌患者术前外周血血常规参数和PLR与NLR的关系

    Table  2   Comparison of preoperative peripheral blood parameters between esophageal cancer patients with different PLR and NLR

    下载: 导出CSV

    表  3   影响食管癌患者生存预后的单因素分析

    Table  3   Univariate analysis of clinical factors for prognosis of esophageal cancer patients

    下载: 导出CSV

    表  4   影响食管癌患者生存预后的多因素Cox回归分析

    Table  4   Multivariate Cox regression analysis of clinical parameters for prognosis of esophageal cancer patients

    下载: 导出CSV
  • [1]

    Wang Y, Wang L, Yang Q, et al. Factors on prognosis in patients of stage T3N0M0 thoracic esophageal squamous cell carcinoma after two-field esophagectomy[J]. J Caner Res Ther, 2015, 11(Suppl1): C16-23. http://www.ncbi.nlm.nih.gov/pubmed/26323918

    [2]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29. doi: 10.3322/caac.21254

    [3]

    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-32. doi: 10.3322/caac.21338

    [4]

    Liu H, Yang J, Yuan Y, et al. Regulation of Mcl-1 by constitutive activation of NF-kappa B contributes to cell viability in human esophageal squamous cell carcinoma cells[J]. BMC Cancer, 2014, 14: 98. doi: 10.1186/1471-2407-14-98

    [5]

    Sarraf KM, Belcher E, Raevsky E, et al. Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer[J]. J Thoac Cardiovas Surg, 2009, 137(2): 425-8. doi: 10.1016/j.jtcvs.2008.05.046

    [6]

    Li MX, Liu XM, Zhang XF, et al. Prognostic role of neutrophil-to-lymphocyte ratio in eolorectal cancer a systematic review and meta-analysis[J]. Int J Canccr, 2014, 134(10): 2403-13. doi: 10.1002/ijc.v134.10

    [7]

    Mano Y, Shirabe K, Yamashila Y, et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepateetomy for hepatocellular carcinoma: a retrospective analysis[J]. Ann Surg, 2013, 258(2): 301-5. doi: 10.1097/SLA.0b013e318297ad6b

    [8]

    Arab B, Bhatt VR, Phookan J, et al. Usefulness of the neutrophil-to-lymphocyte ratio in predicting short-and long-term mortality in breast cancer patients[J]. Ann Surg Oncol, 2011, 19(1): 217-24. http://www.sciencedirect.com/science/article/pii/S0953620511603063

    [9]

    Pichler M, Hutterer GC, Stoeckigt C, et al. Validation of the pretreatment neutrophil-lymphocyte ratio as a prognostic factor in a large European eohort of renal cell carcinoma patients[J]. Br J Cancer, 2013, 108(4): 901-7. doi: 10.1038/bjc.2013.28

    [10]

    Shimada H, Takiguchi N, Kainuma O, et al. High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer[J]. Gastric Cancer, 2010, 13(3): 170-6. doi: 10.1007/s10120-010-0554-3

    [11]

    Unal D, Eroglu C, Kurtul N, et al. Are Neutrophil/Lymphocyte and Platelet/Lymphocyte Rates in Patients with Non-Small Cell Lung Cancer Associated with Treatment Response and Prognosis?[J]. Asian Pac J Cancer Prev, 2013, 14(9): 5237-42. doi: 10.7314/APJCP.2013.14.9.5237

    [12] 山长平, 夏重升, 杨娅, 等.术前外周血血小板与淋巴细胞比值对非小细胞肺癌患者预后的影响[J].中国肿瘤临床, 2014, 41(21): 1374-8. doi: 10.3969/j.issn.1000-8179.20141444

    Shan CP, Xia CS, Yang Y, et al. Effects of preoperative blood platelet-to-lymphocyte ratio on prognosis of non-small cell lung cancer patients after surgical resection[J]. Zhongguo Zhong Liu Lin Chuang, 2014, 41(21): 1374-8. doi: 10.3969/j.issn.1000-8179.20141444

    [13]

    Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow[J]. Lancet, 2001, 357(9255): 539-45. doi: 10.1016/S0140-6736(00)04046-0

    [14]

    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer[J]. Cell, 2010, 140(6): 883-99. doi: 10.1016/j.cell.2010.01.025

    [15] 常立甲, 宋淑霞. stat3信号促进肿瘤免疫抑制微环境形成的研究进展[J].中国免疫学杂志, 2012, 28(2): 177-81. http://www.docin.com/p-706804290.html

    Chang LJ, Song SX. Stat3 signal promotes the development of tumor immunosuppressive microenvironment formation[J]. Zhongguo Mian Yi Xue Za Zhi, 2012, 28(2): 177-81. http://www.docin.com/p-706804290.html

    [16]

    Feng JF, Huang Y, Chen QX. Preoperative platelet lymphocyte ratio (PLR) is superior to neutrophil lymphocyte ratio (NLR) as a predictive factor in patients with esophageal squamous cell carcinoma[J]. World J Surg Oncol, 2014, 12: 58. doi: 10.1186/1477-7819-12-58

    [17]

    Sun Z, Yang P. Role of imbalance between neutrophil elastase and α1-antitrypsin in cancer development and progression[J]. Lancet Oncol, 2004, 5(3): 182-90. doi: 10.1016/S1470-2045(04)01414-7

    [18]

    Bremnes RM, Al-Shibli K, Donnem T, et al. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression and prognosis:emphasis on non-small cell lung cancer[J]. J Thorac Oncol, 2011, 6(4): 824-33. doi: 10.1097/JTO.0b013e3182037b76

    [19]

    Sharaiha RZ, Halazun KJ, Mirza F, et al. Elevated Preoperative neutrophil: lymphocyte ratio a predictor of postoperative disease recurfence in esophageal cancer[J]. Ann Surg Oncol, 2011, 18(12): 3362-9. doi: 10.1245/s10434-011-1754-8

    [20]

    Smith RA, Bosonnet L, Raraty M, et al. Preoperative platelet lymphocyte ratio is all Independent significant prognostic marker in resected pancreatic duetal adenocarcinoma[J]. Ann J Surg, 2009, 197(4): 466-72. doi: 10.1016/j.amjsurg.2007.12.057

    [21]

    Smith RA, Ghaneh P, Sutton R, et al. Prognosis of resected ampullary adenocareinoma by preoperative serum CAl9-9 levels and platelet-lymphocyte ratio[J]. J Gastmintest Surg, 2008, 12(8): 1422-8. doi: 10.1007/s11605-008-0554-3

    [22]

    Kwon HC, Kim SH, Oh SY, et al. Clinical significance of preoperative neutrophil-lymphocyte versus platelet-lymphocyte ratio in patients with operable colorectal cancer[J]. Biomarkers, 2012, 17(3): 216-22. doi: 10.3109/1354750X.2012.656705

    [23]

    Asher V, Lee J, Innamaa A, et al. Preoperative platelet lymphocyte ratio as an independent prognostic marker in ovarian cancer[J]. Clin Transl Oncol, 2011, 13(7): 499-503. doi: 10.1007/s12094-011-0687-9

    [24] 金龙, 付神波, 于娇.治疗前PLR和NLR对鼻咽癌患者预后的影响[J].肿瘤防治研究, 2017, 44(7): 476-80. http://www.zlfzyj.com/CN/abstract/abstract9005.shtml

    Jin L, Fu SB, Yu J. Effect of NLR and PLR from Pre-treatment on Prognosis of Nasopharyngeal Carcinoma Patients[J]. Zhong Liu Fang Zhi Yan Jiu, 2017, 44(7): 476-80. http://www.zlfzyj.com/CN/abstract/abstract9005.shtml

    [25]

    Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cell via up regulation of MMP-2 production[J]. Int J Cancer, 2009, 124(8): 1773-7. doi: 10.1002/ijc.v124:8

    [26]

    Jodephs, Kathryn E, Jessicav, et al. Platelets and fibrin increase metastatic potential by impending natural killer cell mediated elimination of tumor cell[J]. Blood, 2005, 105(1): 178. doi: 10.1182/blood-2004-06-2272

    [27]

    Xie X, Luo KJ, Hu Y, et al. Prognostic value of preoperative platelet-lymphocyte and neutrophil-lymphocyte ratio in patients undergoing surgery for esophageal squamous cell cancer[J]. Dis Esophagus, 2016, 29(1): 79-85. doi: 10.1111/dote.2016.29.issue-1

    [28]

    Jung J, Park SY, Park SJ, et al. Prognostic value of the neutrophil-to-lymphocyte ratio for overall and disease free survival in patients with surgically treated esophageal squamous cell carcinoma[J]. Tumour Biol, 2016, 37(6): 7149-54. doi: 10.1007/s13277-015-4596-3

  • 期刊类型引用(1)

    1. 黄普超,原慧洁,张桂芳. 基于数据挖掘技术的肺癌危险度预测模型的构建. 实用预防医学. 2022(11): 1390-1394 . 百度学术

    其他类型引用(2)

图(1)  /  表(4)
计量
  • 文章访问数:  1605
  • HTML全文浏览量:  361
  • PDF下载量:  636
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-08-28
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2017-12-24

目录

/

返回文章
返回
x 关闭 永久关闭