-
摘要:
肝细胞癌(hepatocellular carcinoma, HCC)是世界上发病率和死亡率最高的恶性肿瘤之一。研究发现,CXCL12-CXCR4/CXCR7生物轴可通过自分泌和(或)旁分泌机制调控HCC细胞的生长、血管生成、免疫逃逸及侵袭转移等关键步骤,有可能成为HCC防治新靶点和预后评价新标志。本文就当前国内外研究CXCL12-CXCR4/CXCR7生物轴在肝癌发生和发展过程中的作用以及与此相关的信号转导途径进行综述。
Abstract:Hepatocellular carcinoma(HCC) is one of the malignant tumors with the highest morbidity and mortality rates in the world. Studies have shown that CXCL12-CXCR4/CXCR7 biological axis can modulate the growth of HCC cells, angiogenesis, immune escape, invasion and metastasis via autocrine and/or paracrine mechanisms, and may become a new therapeutic target and valuable prognostic marker for HCC. This review aims to summarize the multiple functions of CXCL12-CXCR4/CXCR7 axis in HCC development and progression, as well as the signal transductions that are essential to this process.
-
Key words:
- Hepatocellular carcinoma /
- CXCL12 /
- CXCR4 /
- CXCR7
-
0 引言
淋巴母细胞淋巴瘤(lymphoblastic lymphoma, LBL)是一类罕见的、恶性度极高的非霍奇金淋巴瘤,其发病率约占非霍奇金淋巴瘤的2%。由于LBL与急性淋巴细胞白血病(acute lymphoblastic leukemia, ALL)在细胞形态学、免疫表型、基因型、细胞遗传学以及临床表现和预后等方面有相似之处,故新版WHO分类已将LBL与ALL归为同一种疾病的不同时期,定义为定向于T/B细胞系的淋巴母细胞(原始淋巴细胞)恶性肿瘤[1]。根据免疫表型的不同,可将其分为前体T-LBL和前体B-LBL。B-LBL较T-LBL更为罕见,其发病率约为LBL的20%左右,多见于青少年与儿童,易侵袭皮肤、乳腺、肝脏和骨骼等结外器官[2]。国外回顾性研究也曾报道过109名B淋巴母细胞淋巴瘤,其中约60%为小于18岁,75%患者发生了皮肤、骨骼和淋巴结的受累[3]。国内有关B淋巴母细胞淋巴瘤的临床特点及其预后的报道较少,我们分析比较近年来就诊于我院的B-LBL和T-LBL患者的临床特点,并对LBL的治疗及预后进行分析总结。
1 资料与方法
1.1 资料
收集2007年1月至2014年12月天津医科大学肿瘤医院收治的74例经淋巴结或结外组织或骨髓组织病理学、组织化学和免疫表型及分子遗传学等检查确诊为淋巴母细胞淋巴瘤的临床治疗患者的病历资料。诊断及分类依据WHO淋巴造血组织肿瘤的分类标准。组织病理活检是确诊的金标准,当肿瘤表现为瘤块不伴或仅有轻微血液和骨髓受累时(骨髓中原始和幼稚淋巴细胞比率≤25%),诊断为LBL,当存在广泛骨髓、血液受累时(骨髓中原始和幼稚淋巴细胞比率 > 25%),则诊断为ALL。通过细胞免疫表型对LBL进行分型诊断与鉴别诊断,通过免疫组织化学和流式细胞术将LBL分为T细胞型和B细胞型。采用Ann Arbor分期系统,根据患者是否具有全身症状将其分为A和B组,凡有以下症状之一分为B组,无的分为A组:(1)不明原因发热 > 38度;(2)盗汗;(3)体重减轻 > 10%。骨髓原始细胞数 > 5%, < 25%时定义为骨髓受累。
1.2 治疗方案
根据诱导化疗方案分为CHOP样治疗方案组和ALL样治疗方案组:23例采用了CHOP或CHOP样方案化疗,包括CHOP(环磷酰胺+阿霉素+长春新碱+泼尼松),ECHOP方案(足叶乙甙+环磷酰胺+阿霉素+长春新碱+泼尼松)、BCHOP方案(博莱霉素+环磷酰胺+阿霉素+长春新碱+泼尼松)等;51例患者采用ALL类治疗方案,主要包括BFM-90方案(泼尼松+长春新碱+柔红霉素+左旋门冬酰胺酶+环磷酰胺+阿糖胞苷+博来霉素+6-巯基嘌呤)、VDCLP方案(长春新碱+柔红霉素+环磷酰胺+左旋门冬酰氨酶+泼尼松)、Hyper-CVAD A/B方案(A方案(环磷酰胺+长春新碱+表阿霉素+地塞米松)和B方案(大剂量甲氨蝶呤+阿糖胞苷))、MOAP方案(长春新碱+强的松+米托蒽醌+阿糖胞苷)。对10例患者进行了放疗,6例患者进行了自体造血干细胞移植,2例进行了异基因造血干细胞移植。接受化疗患者中位化疗周期数为6(3~13)个。
1.3 近期疗效评价
所有患者均在每两个周期化疗后进行疗效评价。按国际疗效判定标准疗效分为完全缓解(complete remission, CR)、部分缓解(partial remission, PR)和未缓解(not remission, NR)[4]。总有效率(overall response rate, ORR)=CR+PR。
1.4 随访
随访截止时间为2015年8月1日,死亡患者以死亡时间为随访终点。总生存(overall survival, OS)时间为患者疾病确诊至死亡或者随访终点的时间,无进展生存(progression-free survival, PFS)时间为患者疾病治疗后第一次进展或者复发及死亡的时间。
1.5 统计学方法
根据免疫表型的不同分为B-LBL组和T-LBL组,将两组数据进行分析处理,采取t检验和χ2检验,采用Kaplan-Meier方法进行生存分析,多因素采用Cox回归分析,两组生存率则采用Log rank对比,应用SPSS20.0软件进行数据的统计处理,P < 0.05为差异有统计学意义。
2 结果
2.1 临床特点
74例患者就诊时的首发症状以发现肿物最常见,占51.3%,其次依次是胸闷、呼吸困难、胸痛、咳嗽等症状。中位年龄为19.5(1~71)岁,其中男45例、女29例,男女比例约为1.6:1。
临床特征表现为高度侵袭性,起病时多为晚期(81.1%),42例(56.8%)患者起病时伴有B症状;易发生骨髓受累(43.2%)及胸腔、心包积液(44.6%)。16例(21.6%)有纵隔大包块,16例(21.6%)有结外病变,4例(5.4%)患者合并中枢神经系统侵犯。LDH增高见于50%的患者,23%的患者起病时血红蛋白低于正常值,见表 1。
表 1 淋巴母细胞淋巴瘤的临床特征Table 1 Clinical characteristic of lymphoblastic lymphoma patients2.2 B-LBL与T-LBL患者的临床特点比较
B-LBL患者17例,T-LBL患者57例。B-LBL患者中位年龄为6岁,T-LBL的中位年龄为25岁,B-LBL更倾向发生于儿童。B-LBL起病时多伴有贫血。在年龄、有无贫血方面两者差异有统计学意义(均P < 0.05)。在起病时疾病分期、有无B症状、骨髓受累、结外病变、纵隔肿物、LDH和β2微球蛋白水平及治疗效果方面比较,两者差异无统计学意义(均P > 0.05),见表 2。
表 2 B-LBL与T-LBL临床特点比较Table 2 Comparison of clinical characteristic between B-LBL and T-LBL patients2.3 疗效及生存分析
74例患者确诊后均进行治疗,根据诱导治疗方案分组:CHOP样治疗方案组23例,ALL样治疗方案组51例;诱导治疗方案分组与患者疾病分期无关。诱导治疗后有8例患者进行造血干细胞移植作为巩固治疗,其中2例为异基因造血干细胞移植(allo-HSCT),6例为自体造血干细胞移植(au-to-HSCT)。10例患者进行了放疗。
74例诱导治疗总有效率为70.2%,完全缓解率为48.6%,Kaplan-Meier生存分析显示,3年和5年OS分别为38.0%和26.6%,3年和5年PFS分别为34.8%和23.2%,见图 1。其中17例B-LBL的5年OS为52.9%,而57例T-LBL的5年OS为22.7%(P=0.463),总体B-LBL的生存率较T-LBL高,但两者差异无统计学意义。
2.4 不同治疗方案患者疗效及生存分析
51例初始ALL样诱导方案患者,治疗总有效率和完全缓解率分别为76.5%和54.9%;23例CHOP样诱导方案患者,治疗有效率和完全缓解率分别为56.5%和34.8%,远低于ALL样方案治疗疗效。
ALL样化疗组与CHOP样化疗组相比,前者中位生存时间为33月,后者中位生存时间为12月,3年OS分别为47.9% vs. 17.4%,3年PFS分别为43.0% vs. 17.4%,两者比较差异均有统计学意义(P=0.018, P=0.027),见图 2。
2.5 不同治疗疗效生存分析
诱导治疗后获得CR、PR、NR患者3年OS分别为69.4%、23.4%和0,不同治疗疗效患者OS差异有统计学意义(P < 0.005)。3年PFS分别为61.2%、23.4%和0,不同治疗疗效患者PFS差异有统计学意义(P < 0.005),见图 3。
2.6 预后因素分析
单因素分析显示年龄 < 18岁、不伴贫血、β2微球蛋白水平正常、ALL样诱导治疗方案、近期治疗有效的患者总体OS较高(均P < 0.05),而性别、Ann-Arbor分期、细胞来源、B症状骨髓受累、纵隔大包块、LDH、结外受累等与总生存率差异无统计学意义。单因素分析显示PFS多与年龄、β2微球蛋白水平、诱导治疗方案及近期疗效有关(均P < 0.05)。且多因素分析显示初诊时无贫血、近期治疗有效是预后较好的独立因素(均P < 0.05)。对于PFS而言,近期治疗有效是获得较好的无疾病生存的独立因素(P < 0.05),见表 3。
表 3 单因素和多因素生存分析Table 3 Univariate and multivariate survival analyses3 讨论
淋巴母细胞淋巴瘤是非霍奇金淋巴瘤中的一种少见类型,文献中曾报道近100种组织类型的B-LBL,但大多数都是个案报道。B-LBL易发生皮肤受累[5],其次为骨骼、肝脏等结外器官,其中骨骼病变多以溶骨性病变为主[6]。本研究报道的17例B-LBL中,以皮肤起病的3例(17.6%),多发骨破坏的6例(35.3%),肝脏受累的有1例,骨髓受侵袭的有8例,多与文献报道相符。T-LBL起源于胸腺,多见于青少年,发病年龄较B-LBL高,常侵犯纵隔,多以纵隔肿物和浅表淋巴结肿大起病,常伴有上腔静脉压迫综合征,亦易侵犯骨髓和中枢,其预后较B-LBL差[7]。本研究所报道的57例T-LBL中,中位年龄为25岁,较B-LBL高,以纵隔起病的有12例(21.1%),累及骨髓的有32例(43.2%),发生上腔静脉综合征的有2例(3.5%),发生中枢转移的有4例(7.0%),临床特点基本与文献报道相符。B-LBL较T-LBL具有倾向于发生在儿童、起病时常伴有贫血等特点。
淋巴母细胞淋巴瘤与ALL是一种病的两种不同的表现形式,大规模的病例研究较少,尚缺乏标准的治疗方案,传统的CHOP样治疗方案对LBL/ALL疗效不佳,尤其高危患者、疾病进展或复发患者,其治疗困难,预后差[8]。目前常采用高强度、短疗程、急性淋巴细胞白血病样治疗方案作为LBL/ALL的诱导化疗方案,疗效有所提高。尽管我国LBL/ALL患者的临床特征与国外患者相似,但总体疗效与国外相比存在一定差距,这是困扰临床的难题。我国曾有学者就HyperCVAD方案治疗淋巴母细胞淋巴瘤与CHOP方案相比较,指出HyperCVAD方案显著提高了治疗有效率,延长了患者的生存时间而且不良反应可耐受,是治疗淋巴母细胞淋巴瘤的一个有效手段[9]。改良NHL-BFM-90方案则对低危和中危儿童青少年LBL患者有很好的疗效,高危患者疗效差,T-LBL和B-LBL患者疗效相似[10]。但国外有文献报道称B-LBL的预后要优于T-LBL,且儿童的效果远高于成人[11-13]。国外曾有文献指出早期使用ALL类诱导巩固化疗,随后对完全缓解的患者进行Auto-SCT,并对初始患有纵隔肿块、骨骼病变或睾丸病变的患者进行局部放疗可以获得较高的治愈率[14]。虽然该研究的研究对象较少,但这也为LBL的治疗指明了方向。本研究的74例LBL患者5年OS为26.6%,5年PFS为23.2%,较国外文献报道的5年OS为28%及5年PFS为29%相似[15-16]。纳入本研究的6例自体造血干细胞移植的患者中,3例死亡,2例异基因造血干细胞移植的患者中1例死亡。本研究对比了CHOP样及ALL类化疗方案的预后,显示采用ALL类化疗方案的患者OS和PFS明显优于CHOP样方案的患者。本实验研究的17例B-LBL的5年OS为52.9%,而57例T-LBL的5年OS为22.7%(P=0.436),总体B-LBL的生存较T-LBL高,但两者差异无统计学意义。因本研究纳入的B-LBL例数较少,仍需进一步增加病例数来对比二者之间的差异。
与ALL相比,目前尚没有明确的临床特征预后模型在LBL患者中得到证实。国外有报道称年龄是影响预后的一个关键因素,其他如性别、Ann Arbor分期、免疫表型、有无B症状、多发淋巴结肿大等无明显统计学意义[17]。而国内有关T-LBL的研究提出初诊时伴有贫血、血清乳酸脱氢酶(LDH)水平升高、β2微球蛋白水平升高、NHL样诱导治疗方案、近期疗效未获得缓解、血纤维蛋白原水平降低为预后不良因素(均P < 0.005)[18]。本研究中单因素预后分析结果与文献报道是一致的。
淋巴母细胞淋巴瘤具有高度侵袭性,生存期短,多发生于青少年,起病时多为晚期,易发生骨髓转移。采用ALL类化疗方案的患者预后可能优于CHOP样方案。初治获得缓解可能是预后较好的独立因素。
-
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. doi: 10.3322/caac.21262
[2] Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311(2): G203-9. doi: 10.1152/ajpgi.00193.2016
[3] Ray P, Lewin SA, Mihalko LA, et al. Secreted CXCL12 (SDF-1) forms dimers under physiological conditions[J]. Biochem J, 2012, 442(2): 433-42. doi: 10.1042/BJ20111341
[4] Abraham M, Klein S, Bulvik B, et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by down-regulating ERK BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression[J]. Leukemia, 2017 [Epub ahead of print].
[5] Wang X, Cao Y, Zhang S, et al. Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer[J]. Oncotarget, 2017, 8(22): 36149-60.
[6] Hu F, Miao L, Zhao Y, et al. A Meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma[J]. Drug Des Devel Ther, 2015, 9: 3625-33. http://www.ncbi.nlm.nih.gov/pubmed/26203228
[7] Taromi S, Kayser G, Catusse J, et al. CXCR4 antagonists suppress small cell lung cancer progression[J]. Oncotarget, 2016, 7(51): 85185-95. https://www.ncbi.nlm.nih.gov/pubmed/27835905
[8] Shi A, Shi H, Dong L, et al. CXCR7 as a chemokine receptor for SDF-1 promotes gastric cancer progression via MAPK pathways[J]. Scand J Gastroenterol, 2017, 52(6-7): 745-53. doi: 10.1080/00365521.2017.1300681
[9] San-Miguel T, Pinto S, Navarro L, et al. Expression of the Chemokine Receptors CXCR3, CXCR4, CXCR7 and Their Ligands in Rhabdomyosarcoma[J]. Pathol Oncol Res, 2015, 21(4): 1191-9. doi: 10.1007/s12253-015-9947-2
[10] Szpakowska M, Dupuis N, Baragli A, et al. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-Ⅱ is an agonist of the atypical chemokine receptor ACKR3/CXCR7[J]. Biochem Pharmacol, 2016, 114: 14-21. doi: 10.1016/j.bcp.2016.05.012
[11] Sánchez-Alcañiz JA, Haege S, Mueller W, et al. Cxcr7 controls neuronal migration by regulating chemokine responsiveness[J]. Neuron, 2011, 69(1): 77-90. doi: 10.1016/j.neuron.2010.12.006
[12] Qiu F, Li Y, Fu Q, et al. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms[J].Neurochem Res, 2016, 41(7): 1587-603. doi: 10.1007/s11064-016-1873-5
[13] Dillenburg-Pilla P, Patel V, Mikelis CM, et al. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis[J]. FASEB J, 2015, 29(3): 1056-68. doi: 10.1096/fj.14-260083
[14] Lv B, Yang X, Lv S, et al. Retraction Note to:CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma[J]. Mol Neurobiol, 2017, 54(3): 2380. doi: 10.1007/s12035-017-0464-z
[15] Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics[J]. Mol Cell Endocrinol, 2017, 451: 66-70. doi: 10.1016/j.mce.2017.02.019
[16] Kallifatidis G, Munoz D, Singh RK, et al. β-Arrestin-2 Counters CXCR7-Mediated EGFR Transactivation and Proliferation[J]. Mol Cancer Res, 2016, 14(5): 493-503. doi: 10.1158/1541-7786.MCR-15-0498
[17] Coggins NL, Trakimas D, Chang SL, et al. CXCR7 Controls Competition for Recruitment of β-Arrestin 2 in Cells Expressing Both CXCR4 and CXCR7[J]. PLoS One, 2014, 9(6): e98328. doi: 10.1371/journal.pone.0098328
[18] Lin L, Han MM, Wang F, et al. CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression[J]. Cell Death Dis, 2014, 5: e1488. doi: 10.1038/cddis.2014.392
[19] Shah AD, Bouchard MJ, Shieh AC. Interstitial Fluid Flow Increases Hepatocellular Carcinoma Cell Invasion through CXCR4/CXCL12 and MEK/ERK Signaling[J]. PLoS One, 2015, 10(11): e0142337. doi: 10.1371/journal.pone.0142337
[20] Liu H, Liu Y, Liu W, et al. EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma[J]. Nat Commun, 2015, 6: 8494. doi: 10.1038/ncomms9494
[21] Xue TC, Jia QA, Bu Y, et al. CXCR7 correlates with the differentiation of hepatocellular carcinoma and suppresses HNF4α expression through the ERK pathway[J]. Oncol Rep, 2014, 32(6): 2387-96. doi: 10.3892/or.2014.3501
[22] 罗娅, 金海, 文国容, 等.肝细胞肝癌诱导分化治疗研究进展[J].世界华人消化杂志, 2015, 29: 4665-72. http://www.cnki.com.cn/Article/CJFDTOTAL-XXHB201529011.htm Luo Y, Jin H, Wen GR, et al. Advances in differentiation therapy of hepatocellular carcinoma[J]. Shi Jie Hua Ren Xiao Hua Za Zhi, 2015, 29: 4665-72. http://www.cnki.com.cn/Article/CJFDTOTAL-XXHB201529011.htm
[23] Wang Y, Yu H, Shan Y, et al. EphA1 activation promotes the homing of endothelial progenitor cells to hepatocellular carcinoma for tumor neovascularization through the SDF-1/CXCR4 signaling pathway[J]. J Exp Clin Cancer Res, 2016, 35: 65. doi: 10.1186/s13046-016-0339-6
[24] Xu J, Liang J, Meng YM, et al. Vascular CXCR4 expression promotes vessel sprouting and sensitivity to sorafenib treatment inhepato cellular carcinoma[J]. Clin Cancer Res, 2017 [Epub ahead of print].
[25] Chen Y, Teng F, Wang G, et al. Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway[J]. Oncol Rep, 2016, 36(4): 2275-81. doi: 10.3892/or.2016.5045
[26] Li W, Gomez E, Zhang Z. Immunohistochemical expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 ligand receptor system in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2007, 26(4): 527-33. http://www.ncbi.nlm.nih.gov/pubmed/18365549
[27] Shen X, Li N, Li H, et al. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2010, 136(11): 1745-54. doi: 10.1007/s00432-010-0833-8
[28] Chen Y, Ramjiawan R, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice[J]. Hepatology, 2015, 61(5): 1591-602. doi: 10.1002/hep.27665
[29] Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis[J]. Cancer Cell, 2008, 13(1): 23-35. doi: 10.1016/j.ccr.2007.12.004
[30] 戴小珍, 熊新, 王兰, 等. CXCR7-shRNA慢病毒载体对人肝癌细胞生长及侵袭能力的抑制作用[J].南方医科大学学报, 2013, 33(7): 994-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201307012.htm Dai XZ, Xiong X, Wang L, et al. Effects of CXCR7-shRNA lentiviral vector on the growth and invasiveness of human hepatoma carcinoma cells in vitro[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2013, 33(7): 994-8. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201307012.htm
[31] Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells[J]. Oncogene, 2005, 24(27): 4462-71. doi: 10.1038/sj.onc.1208621
[32] Tan W, Zhu S, Cao J, et al. Inhibition of MMP-2 Expression Enhances the Anti-tumor Effect of Sorafenib in Hepatocellular Carcinoma by Suppressing PI3K/AKT/mTOR Pathway[J]. Oncol Res, 2017 [Epub ahead of print].
[33] García-Irigoyen O, Latasa MU, Carotti S, et al. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis[J]. Hepatology, 2015, 62(1): 166-78. doi: 10.1002/hep.27798
[34] Zhang R, Pan X, Huang Z, et al. Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines[J]. PLoS One, 2011, 6(8): e23831. doi: 10.1371/journal.pone.0023831
[35] Reichl P, Haider C, Grubinger M, et al. TGF-β in epithelial to mesenchymal transition and metastasis of liver carcinoma[J]. Curr Pharm Des, 2012, 18(27): 4135-47. doi: 10.2174/138161212802430477
[36] Bertran E, Crosas-Molist E, Sancho P, et al. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells[J]. Hepatology, 2013, 58(6): 2032-44. doi: 10.1002/hep.26597
[37] Cepeda EB, Dediulia T, Fernando J, et al. Mechanisms regulating cell membrane localization of the chemokine receptor CXCR4 in human hepatocarcinoma cells[J]. Biochim Biophys Acta, 2015, 1853(5): 1205-18. doi: 10.1016/j.bbamcr.2015.02.012
[38] Wu YC, Tang SJ, Sun GH, et al. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer[J]. Oncogene, 2016, 35(16): 2123-32. doi: 10.1038/onc.2015.274
[39] Yu H, Zhang L, Liu P. CXCR7 signaling induced epithelial-mesenchymal transition by AKT and ERK pathways in epithelial ovarian carcinomas[J]. Tumour Biol, 2015, 36(3): 1679-83. doi: 10.1007/s13277-014-2768-1
[40] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature, 2001, 410(6824): 50-6. doi: 10.1038/35065016
[41] 施国英, 施德金, 吕伟标, 等.基质细胞衍化生长因子-1及其受体CXCR4在肝细胞癌和肝硬化中的表达[J].中华肝脏病杂志, 2007, 15(4): 276-8. http://d.wanfangdata.com.cn/Periodical/zhgzbzz200704009 Shi GY, Shi DJ, LYU WB, et al. A study of CXCR4/SDF-1 in hepatocellular carcinoma and liver cirrhosis[J]. Zhonghua Gan Zang Bing Za Zhi, 2007, 15(4): 276-8. http://d.wanfangdata.com.cn/Periodical/zhgzbzz200704009
[42] Liu H, Pan Z, Li A, et al. Roles of Chemokine Receptor 4 (CXCR4) and Chemokine Ligand 12 (CXCL12) in Metastasis of Hepatocellular Carcinoma Cells[J]. Cell Mol Immunol, 2008, 5(5): 373-8. doi: 10.1038/cmi.2008.46
计量
- 文章访问数: 1689
- HTML全文浏览量: 349
- PDF下载量: 988