高级搜索

四种肝(癌)细胞系糖代谢的流量解析

萨日娜, 武会娟

萨日娜, 武会娟. 四种肝(癌)细胞系糖代谢的流量解析[J]. 肿瘤防治研究, 2016, 43(11): 942-947. DOI: 10.3971/j.issn.1000-8578.2016.11.005
引用本文: 萨日娜, 武会娟. 四种肝(癌)细胞系糖代谢的流量解析[J]. 肿瘤防治研究, 2016, 43(11): 942-947. DOI: 10.3971/j.issn.1000-8578.2016.11.005
SA Ri’na, WU Huijuan. Glucose Metabolic Flux of Four Liver (Hepatoma) Cell Lines[J]. Cancer Research on Prevention and Treatment, 2016, 43(11): 942-947. DOI: 10.3971/j.issn.1000-8578.2016.11.005
Citation: SA Ri’na, WU Huijuan. Glucose Metabolic Flux of Four Liver (Hepatoma) Cell Lines[J]. Cancer Research on Prevention and Treatment, 2016, 43(11): 942-947. DOI: 10.3971/j.issn.1000-8578.2016.11.005

四种肝(癌)细胞系糖代谢的流量解析

详细信息
    作者简介:

    萨日娜(1987-),女,博士,助理研究员,主要从事癌症等代谢相关疾病的代谢组学与脂质组学相关研究

    通讯作者:

    武会娟,E-mail: whjmmwhj@126.com

  • 中图分类号: R735.7

Glucose Metabolic Flux of Four Liver (Hepatoma) Cell Lines

More Information
  • 摘要:
    目的 

    分析人正常肝细胞(HL-7702)、不同转移潜能的肝细胞癌细胞系(SMMC-7721、HCCLM3)以及肝癌门静脉癌栓细胞系(CSQT2)的糖代谢流量及相关基因表达。

    方法 

    利用稳定同位素13C标记的葡萄糖与谷氨酰胺作为营养源,结合酶活实验,对四种细胞进行糖代谢流量解析。

    结果 

    MTT与Transwell实验证实了HL-7702、SMMC-7721、HCCLM3、CSQT2细胞的增殖与迁移能力依次增加。酶活实验与标记实验结果均显示,糖酵解与三羧酸循环的代谢活性在四种细胞中依次增加,具体表现为葡萄糖消耗与乳酸产生的增加,代谢流量比率在多种糖代谢产物中的上升,尤其是在CSQT2细胞中达到最高。

    结论 

    随着肝癌细胞的恶性程度及转移能力的增加,糖酵解与三羧酸循环的代谢活性增加。代谢流量分析可能用以判断肝癌的发生发展与转移。

     

    Abstract:
    Objective 

    To analyze glucose metabolic flux and related gene expression of human normal liver cells (HL-7702) ,hepatoma cell lines with different metastasis degree (SMMC-7721,HCCLM3) and hepatic portal vein tumor thrombus cell line CSQT2.

    Methods 

    Stable isotope 13C labeled glucose and glutamine were used as the nutrient source. Label assay and enzymes activity assay were employed to analyze glucose metabolic activity and flux of the four cell lines.

    Results 

    MTT and Transwell assay confirmed the proliferation and migration abilities were increased successively in HL-7702,SMMC-7721,HCCLM3 and CSQT2 cells. Label assay and enzyme activity assay showed that metabolic activity in glycolysis and tricarboxylic acid cycle(TCA cycle) was successively increased in the four cells,mainly reflected by the increase of glucose consumption and lactate production,as well as metabolic flux and ratio of glucose metabolism in hepatoma cell lines compared with normal liver cells,and reached the highest level in CSQT2 cell line.

    Conclusion 

    The metabolic pathway of glycolysis and TCA cycle is activated as malignant and metastasis degrees are increased in liver cancer cell lines. Metabolic flux analysis may help to diagnose the development and metastasis of liver cancer.

     

  • 图  1   四种细胞系的增殖(A)与迁移(B)能力

    Figure  1   Proliferation(A) and migration(B) abilities of four cell lines

    图  2   糖酵解与三羧酸循环代谢通路图(A) 和标记实验的代谢流量分析示意图(B)

    Figure  2   Metabolic pathways and metabolites of glycolysis and tricarboxylic acid(TCA) cycle(A) and Sketch map of metabolic flux analysis of label assay(B)

    图  3   13C-glucose标记实验检测四种细胞系糖酵解通路的代谢流量

    Figure  3   Metabolic flux of glycolysis in four cell lines detected by 13C-glucose label assay

    图  4   13C-glutamine标记实验检测四种细胞系三羧酸循环的代谢流量

    Figure  4   Metabolic flux of TCA cycle in four cell lines detected by 13C-glutamine label assay

    图  5   四种细胞的葡萄糖消耗曲线(A)与乳酸产生曲线(B)

    Figure  5   Glucose consumption curve(A) and lactate production curve(B) of four cell lines

    表  1   GC-MS柱温程序

    Table  1   Column temperature procedure of GC-MS

    下载: 导出CSV

    表  2   代谢物的GC-MS检测参数

    Table  2   Parameters of metabolites detected by GC-MS

    下载: 导出CSV

    表  3   细胞中13C标记的碳原子在各代谢物中的比例 (%)

    Table  3   Proportion of carbon labeled from 13C in metabolites from cells (%)

    下载: 导出CSV

    表  4   培养液中13C标记的碳原子在各代谢物中的比例 (%)

    Table  4   Proportion of carbon labeled from 13C in metabolites from medium (%)

    下载: 导出CSV
  • [1] El-Serag HB, Rudolph KL. Hepatocellular Carcinoma: epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132(7): 2557-76.
    [1]

    El-Serag HB,Rudolph KL. Hepatocellular Carcinoma: epidemiology and molecular carcinogenesis[J]. Gastroenterology,2007,132(7): 2557-76. doi: 10.1053/j.gastro.2007.04.061

    [2] Kaibori M, Ishizaki M, Matsui K, et al. Predictors of microvascular invasion before hepatectomy for hepatocellular carcinoma[J]. J Surg Oncol, 2010, 102(5): 462-8.
    [2]

    Kaibori M,Ishizaki M,Matsui K,et al. Predictors of microvascular invasion before hepatectomy for hepatocellular carcinoma[J]. J Surg Oncol,2010,102(5): 462-8. doi: 10.1002/jso.v102:5

    [3]

    Benjamin DI,Cravatt BF,Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer[J]. Cell Metab,2012,16(5): 565-77. doi: 10.1016/j.cmet.2012.09.013

    [3] Benjamin DI, Cravatt BF, Nomura DK. Global profiling strategies for mapping dysregulated metabolic pathways in cancer[J]. Cell Metab, 2012, 16(5): 565-77.
    [4] Wang T, Hu HS, Feng YX, et al. Characterisation of a novel cell line (CSQT-2) with high metastatic activity derived from portal vein tumour thrombus of hepatocellular carcinoma[J]. Br J Cancer, 2010, 102(11): 1618-26.
    [4]

    Wang T,Hu HS,Feng YX,et al. Characterisation of a novel cell line (CSQT-2) with high metastatic activity derived from portal vein tumour thrombus of hepatocellular carcinoma[J]. Br J Cancer,2010,102(11): 1618-26. doi: 10.1038/sj.bjc.6605689

    [5]

    Ma L,Tao Y,Duran A,et al. Control of nutrient stress-induced metabolic reprogramming by PKCzeta in tumorigenesis[J]. Cell,2013,152(3): 599-611. doi: 10.1016/j.cell.2012.12.028

    [5] Ma L, Tao Y, Duran A, et al. Control of nutrient stress-induced metabolic reprogramming by PKCzeta in tumorigenesis[J]. Cell, 2013, 152(3): 599-611.
    [6]

    Huang Q,Tan Y,Yin P,et al. Metabolic characterization of hepatocellular carcinoma using non-targeted tissue metabolomics[J]. Cancer Res,2013,73(16): 4992-5002. doi: 10.1158/0008-5472.CAN-13-0308

    [6] Huang Q, Tan Y, Yin P, et al. Metabolic characterization of hepatocellular carcinoma using non-targeted tissue metabolomics[J]. Cancer Res, 2013, 73(16): 4992-5002.
    [7] Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008[J]. J Hepatol, 2008, 48 Suppl 1: S20-S37.
    [7]

    Llovet JM,Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008[J]. J Hepatol,2008,48 Suppl 1: S20-S37.

    [8] 邱继刚, 樊嘉, 刘银坤, 等. 肝癌门静脉癌栓相关小分子的比 较蛋白质组学分析[J]. 中华实验外科杂志, 2009, 26(2): 181-3. [Qiu JG, Fan J, Liu YK, et al. Comparative proteome analysis of PVTT realated small molecules[J]. Zhonghua Shi Yan Wai Ke Za Zhi, 2009, 26(2): 181-3.]
    [8] 邱继刚,樊嘉,刘银坤,等. 肝癌门静脉癌栓相关小分子的比较蛋白质组学分析[J]. 中华实验外科杂志,2009,26(2): 181-3.

    Qiu JG,Fan J,Liu YK,et al. Comparative proteome analysis of PVTT realated small molecules[J]. Zhonghua Shi Yan Wai Ke Za Zhi,2009,26(2): 181-3.iu JG,Fan J,Liu YK,et al. Comparative proteome analysis of PVTT realated small molecules[J]. Zhonghua Shi Yan Wai Ke Za Zhi,2009,26(2): 181-3.

    [9]

    Haschemi A,Kosma P,Gille L,et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab,2012,15(6): 813-26. doi: 10.1016/j.cmet.2012.04.023

    [9] Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab, 2012, 15(6): 813-26.
    [10] 禹鸿鸣, 程树群. 醛缩酶B在索拉非尼治疗肝癌的耐药作用研 究[D]. 上海:第二军医大学, 2015. [Yu HM, Cheng SQ. Study of adolase B in sorafenib resistance of hepatocellular carcinom[D]. Shanghai: Di Er Jun Yi Da Xue, 2015.]
    [10] 禹鸿鸣,程树群. 醛缩酶B在索拉非尼治疗肝癌的耐药作用研究[D]. 上海:第二军医大学,2015.

    Yu HM,Cheng SQ. Study of adolase B in sorafenib resistance of hepatocellular carcinom[D]. Shanghai: Di Er Jun Yi Da Xue,2015.u HM,Cheng SQ. Study of adolase B in sorafenib resistance of hepatocellular carcinom[D]. Shanghai: Di Er Jun Yi Da Xue,2015.

图(5)  /  表(4)
计量
  • 文章访问数:  1486
  • HTML全文浏览量:  335
  • PDF下载量:  1684
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-12
  • 修回日期:  2016-03-30
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2016-10-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭