高级搜索

UGCG通过调控MDR1/P-gp参与人结肠癌奥沙利铂耐药的初步研究

张秀芬, 刘贝贝, 郭子健, 李莉华

张秀芬, 刘贝贝, 郭子健, 李莉华. UGCG通过调控MDR1/P-gp参与人结肠癌奥沙利铂耐药的初步研究[J]. 肿瘤防治研究, 2016, 43(9): 743-747. DOI: 10.3971/j.issn.1000-8578.2016.09.003
引用本文: 张秀芬, 刘贝贝, 郭子健, 李莉华. UGCG通过调控MDR1/P-gp参与人结肠癌奥沙利铂耐药的初步研究[J]. 肿瘤防治研究, 2016, 43(9): 743-747. DOI: 10.3971/j.issn.1000-8578.2016.09.003
ZHANG Xiufen, LIU Beibei, GUO Zijian, LI Lihua. UGCG is Involved in Oxaliplatin Resistance Mechanism of Human Colon Cancer Through Regulating MDR1/P-gp Expression[J]. Cancer Research on Prevention and Treatment, 2016, 43(9): 743-747. DOI: 10.3971/j.issn.1000-8578.2016.09.003
Citation: ZHANG Xiufen, LIU Beibei, GUO Zijian, LI Lihua. UGCG is Involved in Oxaliplatin Resistance Mechanism of Human Colon Cancer Through Regulating MDR1/P-gp Expression[J]. Cancer Research on Prevention and Treatment, 2016, 43(9): 743-747. DOI: 10.3971/j.issn.1000-8578.2016.09.003

UGCG通过调控MDR1/P-gp参与人结肠癌奥沙利铂耐药的初步研究

基金项目: 

国家自然科学基金面上项目 81472485

江苏省“六大人才高峰”项目 WSW-014

无锡市医院管理中心项目 YGZXQ1311, YGZXM14038

详细信息
    作者简介:

    张秀芬(1987-),女,硕士,技师,主要从事肿瘤分子生物学的研究

    通讯作者:

    李莉华.E-mail: LLHWXSY@aliyun.com

  • 中图分类号: R735.3; R730.53; R730.7

UGCG is Involved in Oxaliplatin Resistance Mechanism of Human Colon Cancer Through Regulating MDR1/P-gp Expression

More Information
  • 摘要:
    目的 

    建立人结肠癌耐奥沙利铂(L-OHP)细胞株,检测该细胞株的多药耐药性并初步探讨其可能的耐药机制。

    方法 

    以人结肠癌细胞HCT116为对象,采用药物浓度梯度递增诱导法建立人结肠癌耐奥沙利铂细胞株HCT-116/L-OHP。CCK-8法检测L-OHP、顺铂(DDP)、5-氟尿嘧啶(5-Fu)对亲本细胞和耐药细胞株的半数抑制浓度(IC50)。使用UDP-葡萄糖神经酰胺糖基转移酶(UGCG)siRNA转染HCT-116/L-OHP细胞,实时荧光定量 PCR和Western blot检测干扰前后UGCG基因和多药耐药基因1(MDR1)mRNA及其编码的蛋白表达水平。

    结果 

    HCT-116/L-OHP对L-OHP的耐药指数为10.5,与DDP有一定程度的交叉耐药,耐药指数为4.61,但对5-Fu无交叉耐药。耐药细胞HCT-116/L-OHP中UGCG、MDR1 mRNA和UGCG、P-糖蛋白(P-gp, MDR1编码的蛋白)表达均增加,相比HCT-116细胞,差异具有统计学意义(P<0.05)。UGCG siRNA成功抑制HCT-116/L-OHP细胞中UGCG的表达,各干扰组MDR1 mRNA、P-gp表达减少,与对照组相比差异具有统计学意义(P<0.05)。

    结论 

    成功构建了人结肠癌耐药细胞株;UGCG基因通过调控MDR1/P-gp的表达参与人结肠癌奥沙利铂的耐药机制的形成。

     

    Abstract:
    Objective 

    To establish and authenticate an oxaliplatin (L-OHP) resistant human colon cancer cell line, and to preliminarily explore the multidrug resistance mechanism.

    Methods 

    An L-OHP-resistant human colon cancer cell line, HCT116/L-OHP, was established by gradually increasing the dose of L-OHP in the culture. The half inhibition concentration (IC50) of L-OHP, cisplatin (DDP) and 5-fluorouracil (5-Fu) in HCT116 and HCT116/L-OHP cell lines were evaluated by CCK8 assay. The siRNAs of UDP-glucose ceramide glucosyltransferase (UGCG) were used to transfect HCT-116/L-OHP cells. The gene and protein expression levels of UGCG and multidrug resistance gene1 (MDR1) were examined by real-time reverse transcription-polymerase chain reaction(PCR) and Western blot.

    Results 

    The resistance index to L-OHP in HCT116/L-OHP cell line was 10.5. In addition, HCT116/L-OHP cell line had cross resistance with DDP by 4.61 of the resistance index, but not with 5-Fu. The expression levels of UGCG mRNA, MDR1 mRNA, UGCG protein and P-glycoprotein (P-gp, encoded by MDR1 gene) were significantly higher in HCT116/L-OHP cells than those in HCT116 cells (P<0.05). After transfected with UGCG siRNA, both UGCG gene and protein expression were inhibited in HCT116/L-OHP cells. Compared with the negative control, the expression of MDR1 mRNA and P-gp were also significantly decreased (P<0.05).

    Conclusion 

    L-OHP resistant human colorectal cancer cell line HCT116/L-OHP are successfully established, and UGCG is involved in L-OHP resistance mechanism of human colon cancer through regulating MDR1/P-gp expression.

     

  • 图  1   不同浓度L-OHP、DDP和5-Fu对HCT116、HCT116/L-OHP细胞的生长抑制作用

    Figure  1   Inhibitory effect of different concentrations of L-OHP,DDP and 5-Fu on HCT116 and HCT116/L-OHP cells

    图  2   HCT116和HCT116/L-OHP中UGCG和MDR1 mRNA表达水平

    Figure  2   Expression of UGCG and MDR1 mRNA in HCT116 and HCT116/L-OHP cells

    图  3   HCT116和HCT116/L-OHP细胞中UGCG、P-gp蛋白的表达

    Figure  3   Expression of UGCG and P-gp protein in HCT116 and HCT116/L-OHP cells

    图  4   UGCG siRNA转染后HCT116/L-OHP细胞中UGCG和MDR1 mRNA的表达

    Figure  4   Expression of UGCG and MDR1 mRNA in HCT116/L-OHP cells after UGCG siRNA transfection

    图  5   UGCG siRNA转染后HCT116/L-OHP细胞中UGCG、P-gp蛋白的表达

    Figure  5   Expression of UGCG and P-gp protein in HCT116/L-OHP after UGCG siRNA transfection

    表  1   UGCG、MDR1和GAPDH的PCR引物

    Table  1   PCR Primers of UGCG,MDR1 and GAPDH

    下载: 导出CSV
  • [1]

    Raymond E, Chaney SG, Taamma A, et al. Oxaliplatin: a review of preclinical and clinical studies[J]. Ann Oncol, 1998, 9(10): 1053-71. doi: 10.1023/A:1008213732429

    [1] Raymond E, Chaney SG, Taamma A, et al. Oxaliplatin: a review of preclinical and clinical studies[J]. Ann Oncol, 1998, 9(10): 10 53-71.
    [2] Patwardhan G, Gupta V, Huang J, et al. Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy[J]. Biochem Pharmacol, 2010, 80(1): 72-9.
    [2]

    Patwardhan G, Gupta V, Huang J, et al. Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy[J]. Biochem Pharmacol, 2010, 80(1): 72-9. doi: 10.1016/j.bcp.2010.03.010

    [3] 张秀芬, 谢可鸣, 邹健, 等. NS-κB介导白血病多药耐药细胞中葡萄糖神经酰胺合成酶对P-糖蛋白的调节作用[J]. 中华医学遗传学杂志, 2014, 31(1): 34-8. http://cdmd.cnki.com.cn/article/cdmd-10285-1013242707.htm

    Zhang XF, Xie KM, Zou J, et al. NF-κB the effect of glucosylceramide synthase on P-glycoprotein modulation in a drug-resistance leukemia cell line[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014, 31(1): 34-8. http://cdmd.cnki.com.cn/article/cdmd-10285-1013242707.htm

    [3] 张秀芬, 谢可鸣, 邹健, 等. NS-κB介导白血病多药耐药细胞中 葡萄糖神经酰胺合成酶对P-糖蛋白的调节作用[J]. 中华医学 遗传学杂志, 2014, 31(1): 34-8. [Zhang XF, Xie KM, Zou J, et al. NF-κB the effect of glucosylceramide synthase on P-glycoprotein modulation in a drug-resistance leukemia cell line[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2014, 31(1): 34-8.]
    [4]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29. doi: 10.3322/caac.21254

    [4] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29.
    [5] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 20 12[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
    [5]

    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. doi: 10.3322/caac.21262

    [6]

    Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219-34. doi: 10.1038/nrd1984

    [6] Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219-34.
    [7]

    Wilson TR, Johnston PG, Longley DB. Anti-apoptotic mechanisms of drug resistance in cancer[J]. Curr Cancer Drug Targets, 2009, 9(3): 307-19. doi: 10.2174/156800909788166547

    [7] Wilson TR, Johnston PG, Longley DB. Anti-apoptotic mechanisms of drug resistance in cancer[J]. Curr Cancer Drug Targets, 2009, 9(3): 307-19.
    [8] Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition[J]. Cancer Res, 20 09, 69(5): 1951-7.
    [8]

    Dallas NA, Xia L, Fan F, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition[J]. Cancer Res, 2009, 69(5): 1951-7. doi: 10.1158/0008-5472.CAN-08-2023

    [9]

    Dimanche-Boitrel MT, Rebillard A, Gulbins E. Ceramide in chemotherapy of tumors[J]. Recent Pat Anticancer Drug Discov, 2011, 6(3): 284-93. doi: 10.2174/157489211796957838

    [9] Dimanche-Boitrel MT, Rebillard A, Gulbins E. Ceramide in chemotherapy of tumors[J]. Recent Pat Anticancer Drug Discov, 20 11, 6(3): 284-93.
    [10] Dumitru CA, Weller M, Gulbins E. Ceramide metabolism determines glioma cell resistance to chemotherapy[J]. J Cell Physiol, 2009, 221(3): 688-95.
    [10]

    Dumitru CA, Weller M, Gulbins E. Ceramide metabolism determines glioma cell resistance to chemotherapy[J]. J Cell Physiol, 2009, 221(3): 688-95. doi: 10.1002/jcp.21907

    [11]

    Liu YY, Yu JY, Yin D, et al. A role for ceramide in driving cancer cell resistance to doxorubicin[J]. FASEB J, 2008, 22(7): 2541-51. doi: 10.1096/fj.07-092981

    [11] Liu YY, Yu JY, Yin D, et al. A role for ceramide in driving cancer cell resistance to doxorubicin[J]. FASEB J, 2008, 22(7): 2541-51.
    [12] Wu CP, Calcagno AM, Ambudkar SV. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies[J]. Curr Mol Pharmacol, 2008, 1( 2): 93-105.
    [12]

    Wu CP, Calcagno AM, Ambudkar SV. Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies[J]. Curr Mol Pharmacol, 2008, 1(2): 93-105. doi: 10.2174/1874467210801020093

    [13] Cole SP. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future[J]. Annu Rev Pharmacol Toxicol, 2014, 54: 95-117.
    [13]

    Cole SP. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future[J]. Annu Rev Pharmacol Toxicol, 2014, 54: 95-117. doi: 10.1146/annurev-pharmtox-011613-135959

    [14]

    Aldonza MB, Hong JY, Bae SY, et al. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells[J]. PLoS One, 2015, 10(6): e0127841. doi: 10.1371/journal.pone.0127841

    [14] Aldonza MB, Hong JY, Bae SY, et al. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells[J]. PLoS One, 2015, 10(6): e0127841.
    [15] 许月天, 孙剑经. NS-398逆转结肠癌细胞多药耐药性的作用 [J] 肿瘤防治研究, 2015, 42(9): 877-81. [Xu YT, Sun JJ. NS-398 Reverses Multi-drug Resistance of Colorectal Carcinoma Cells[J]. Zhong Liu Fang Zhi Yan Jiu, 2015, 42(9): 877-81.]
    [15] 许月天, 孙剑经. NS-398逆转结肠癌细胞多药耐药性的作用[J]. 肿瘤防治研究, 2015, 42(9): 877-81. http://www.zlfzyj.com/CN/abstract/abstract8582.shtml

    Xu YT, Sun JJ. NS-398 Reverses Multi-drug Resistance of Colorectal Carcinoma Cells[J]. Zhong Liu Fang Zhi Yan Jiu, 2015, 42(9): 877-81. http://www.zlfzyj.com/CN/abstract/abstract8582.shtml

    [16] Noratto GD, Jutooru I, Safe S, et al. The drug resistance suppression induced by curcuminoids in colon cancer SW-480 cells is mediated by reactive oxygen species-induced disruption of the microRNA-27a-ZBTB10-Sp axis[J]. Mol Nutr Food Res, 20 13, 57(9): 1638-48.
    [16]

    Noratto GD, Jutooru I, Safe S, et al. The drug resistance suppression induced by curcuminoids in colon cancer SW-480 cells is mediated by reactive oxygen species-induced disruption of the microRNA-27a-ZBTB10-Sp axis[J]. Mol Nutr Food Res, 2013, 57(9): 1638-48. doi: 10.1002/mnfr.v57.9

    [17]

    Zhao Q, Li Y, Tan BB, et al. HIF-1α Induces Multidrug Resistance in Gastric Cancer Cells by Inducing MiR-27a[J]. PLoS One, 2015, 10(8): e0132746. doi: 10.1371/journal.pone.0132746

    [17] Zhao Q, Li Y, Tan BB, et al. HIF-1α Induces Multidrug Resistance in Gastric Cancer Cells by Inducing MiR-27a[J]. PLoS One, 2015, 10 (8): e0132746.
图(5)  /  表(1)
计量
  • 文章访问数:  1666
  • HTML全文浏览量:  315
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-03-17
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2016-08-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭