高级搜索

莱菔硫烷抑制肺癌干细胞增殖的体外实验

谢有科, 张弓, 李雪梅, 黄丁平

谢有科, 张弓, 李雪梅, 黄丁平. 莱菔硫烷抑制肺癌干细胞增殖的体外实验[J]. 肿瘤防治研究, 2016, 43(7): 555-559. DOI: 10.3971/j.issn.1000-8578.2016.07.003
引用本文: 谢有科, 张弓, 李雪梅, 黄丁平. 莱菔硫烷抑制肺癌干细胞增殖的体外实验[J]. 肿瘤防治研究, 2016, 43(7): 555-559. DOI: 10.3971/j.issn.1000-8578.2016.07.003
XIE Youke, ZHANG Gong, LI Xuemei, HUANG Dingping. Sulforaphane Suppressed Proliferation of Lung Cancer Stem Cells in vitro[J]. Cancer Research on Prevention and Treatment, 2016, 43(7): 555-559. DOI: 10.3971/j.issn.1000-8578.2016.07.003
Citation: XIE Youke, ZHANG Gong, LI Xuemei, HUANG Dingping. Sulforaphane Suppressed Proliferation of Lung Cancer Stem Cells in vitro[J]. Cancer Research on Prevention and Treatment, 2016, 43(7): 555-559. DOI: 10.3971/j.issn.1000-8578.2016.07.003

莱菔硫烷抑制肺癌干细胞增殖的体外实验

基金项目: 

国家自然科学基金 81560476

八桂学者建设工程专项经费资助 

详细信息
    作者简介:

    谢有科(1979-),男,博士,主治医师,主要从事肺癌干细胞基础与临床研究

  • 中图分类号: R734.2

Sulforaphane Suppressed Proliferation of Lung Cancer Stem Cells in vitro

  • 摘要:
    目的 

    研究莱菔硫烷(sulforaphane, SFN)对肺癌干细胞增殖的影响及其机制。

    方法 

    采用MTT法分析SFN对H460细胞增殖的影响;应用流式细胞术(FACS)检测SFN对细胞凋亡和侧群细胞比例的影响;肿瘤球培养法分析SFN对肿瘤球生长的影响;使用shRNA慢病毒载体构建β-catenin低表达细胞株,并应用蛋白电泳法检测在β-catenin正常或低表达情况下莱菔硫烷对β-catenin、Oct4、Sox2、c-Myc、Nanog等基因表达的影响。

    结果 

    SFN有效抑制H460细胞增殖,IC50为11.2μmol/L。SFN处理72 h后,细胞凋亡呈剂量依赖性增高。SFN有效抑制原代肿瘤球和2代肿瘤球的生长,在较低浓度(1.0μmol/L)下即有明显的抑制作用。FACS检测提示侧群细胞比例随SFN浓度增高而减少。SFN浓度依赖性地抑制β-catenin、Oct4、Sox2、c-Myc和Nanog等蛋白表达。在低表达β-catenin情况下,Oct4、Sox2、c-Myc、Nanog等基因表达水平与SFN浓度相关。

    结论 

    SFN通过β-catenin和干性相关基因(Sox2、c-Myc、Nanog和Oct4)特异地抑制肺癌干细胞的增殖。

     

    Abstract:
    Objective 

    To investigate the effect of sulforaphane(SFN) on regulating proliferation of lung cancer stem cells and its mechanism.

    Methods 

    The effect of SFN on the proliferation of H460 cells was measured by MTT method; cell apoptosis and side population rate were analyzed by fluorescence activated cell sorting(FACS); the change of tumor sphere growth was detected by sphere formation experiment; H460 cells with low expression ofβ-catenin gene was established by shRNA lentivirus transfection, and the effect of SFN on the expression ofβ-catenin, Oct4, Sox-2, c-Myc and Nanog was examined with or withoutβ-catenin expression by Western blot.

    Results 

    SFN efficiently suppressed the proliferation of H460 cells in vitro and the IC50 was 11.2μmol/L. The number of apoptotic cells was dose-dependently increased after the treatment of SFN for 72h. In tumor sphere formation experiment, SFN dose-dependently suppressed the growth of 1st and 2nd passage of tumor sphere, even in a very low dose(1.0μmol/L) of SFN. The proportion of side population cells detected by FACS was decreased as increment of SFN concentration. Western blot experiment showed that SFN dose-dependently suppressed the expression of several stemness-related genes, such asβ-catenin, Oct4, Sox2, c-Myc and Nanog, changed as well as side population, even in absence ofβ-catenin.

    Conclusion 

    SFN specially suppresses the proliferation of lung cancer stem cells viaβ-catenin signaling and several stemness-related genes, such as Oct4, Sox2, c-Myc and Nanog.

     

  • 图  1   莱菔硫烷对H460细胞凋亡率的影响

    Figure  1   Sulforaphane(SFN) induced apoptosis of H460 cells

    图  2   莱菔硫烷对原代肺癌细胞肿瘤球形成能力的影响(n=3)

    Figure  2   Sulforaphane suppressed forming ability of primary tumor sphere (n=3)

    图  3   莱菔硫烷对H460侧群细胞比例的影响

    Figure  3   Effect of sulforaphane on side population of H460 cells

    图  4   莱菔硫烷对H460细胞干性相关基因表达的影响

    Figure  4   Sulforaphane suppressed expression of stemness-related genes in H460 cells

    表  1   莱菔硫烷对H460细胞凋亡的影响(n=3)

    Table  1   Sulforaphane induced apoptosis of H460 cells (n=3)

    下载: 导出CSV

    表  2   莱菔硫烷对肺癌肿瘤球形成的影响(n=3)

    Table  2   Effect of sulforaphane on tumor sphere forming in lung cancer (n=3)

    下载: 导出CSV

    表  3   不同浓度莱菔硫烷对H460侧群细胞的影响

    Table  3   Effect of sulforaphane on side population of H460 cells

    下载: 导出CSV
  • [1]

    Rausch V, Liu L, Kallifatidis G, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics[J]. Cancer Res, 2010, 70(12): 5004-13. doi: 10.1158/0008-5472.CAN-10-0066

    [1] Rausch V, Liu L, Kallifatidis G, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics[J]. Cancer Res, 2010, 70(12): 5004-13.
    [2]

    Kallifatidis G, Rausch V, Baumann B, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling[J]. Gut, 2009, 58(7): 949-63. doi: 10.1136/gut.2008.149039

    [2] Kallifatidis G, Rausch V, Baumann B, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling[J]. Gut, 2009, 58(7): 949-63.
    [3] Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells[J]. Clin Cancer Res, 2010, 16(9): 2580-90.
    [3]

    Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells[J]. Clin Cancer Res, 2010, 16(9): 2580-90. doi: 10.1158/1078-0432.CCR-09-2937

    [4] Dang YM, Huang G, Chen YR, et al. Sulforaphane inhibits the proliferation of the BIU87 bladder cancer cell line via IGFBP-3 elevation[J].Asian Pac J Cancer Prev, 2014, 15(4): 1517-20.
    [4]

    Dang YM, Huang G, Chen YR, et al. Sulforaphane inhibits the proliferation of the BIU87 bladder cancer cell line via IGFBP-3 elevation[J]. Asian Pac J Cancer Prev, 2014, 15(4): 1517-20. doi: 10.7314/APJCP.2014.15.4.1517

    [5] Wang M, Zhu JY, Chen S, et al. Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5'-diphosphoglucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells[J]. Oncol Lett, 20 14, 8(6): 2407-16.
    [5]

    Wang M, Zhu JY, Chen S, et al. Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5' -diphospho-glucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells[J]. Oncol Lett, 2014, 8(6): 2407-16. http://cn.bing.com/academic/profile?id=2063744343&encoded=0&v=paper_preview&mkt=zh-cn

    [6] Yang GJ, Zhang J, Cui LL, et al. Effects of SFN on expression of CYR61 in A549 cell lines[J]. Zhong Liu Fang Zhi Yan Jiu, 2009, 36 (10): 821-4. [杨国俊, 张军, 崔玲玲, 等. 莱菔硫烷对A549细 胞株CYR61基因表达的影响[J]. 肿瘤防治研究, 2009, 36(10): 82 1-4.]
    [6] 杨国俊, 张军, 崔玲玲, 等.莱菔硫烷对A549细胞株CYR61基因表达的影响[J].肿瘤防治研究, 2009, 36(10): 821-4. http://www.zlfzyj.com/CN/abstract/abstract1645.shtml

    Yang GJ, Zhang J, Cui LL, et al. Effects of SFN on expression of CYR61 in A549 cell lines[J]. Zhong Liu Fang Zhi Yan Jiu, 2009, 36(10): 821-4. http://www.zlfzyj.com/CN/abstract/abstract1645.shtml

    [7]

    Lan F, Pan Q, Yu H, et al. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma[J]. J Neurochem, 2015, 134(5): 811-8. doi: 10.1111/jnc.2015.134.issue-5

    [7] Lan F, Pan Q, Yu H, et al. Sulforaphane enhances temozolomideinduced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma[J]. J Neurochem, 2015, 13 4(5): 811-8.
    [8] Lin LC, Yeh CT, Kuo CC, et al. Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/β-catenin function[J]. J Agric Food Chem, 2012, 60(28): 7031-9.
    [8]

    Lin LC, Yeh CT, Kuo CC, et al. Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/β-catenin function[J]. J Agric Food Chem, 2012, 60(28): 7031-9. doi: 10.1021/jf301981n

    [9] Niu X, Liu S, Jia L, et al. Role of MiR-3619-5p in β-Catenin- Mediated Non-Small Cell Lung Cancer Growth and Invasion[J]. Cell Physiol Biochem, 2015, 37(4): 1527-36.
    [9]

    Niu X, Liu S, Jia L, et al. Role of MiR-3619-5p inβ-Catenin-Mediated Non-Small Cell Lung Cancer Growth and Invasion[J].Cell Physiol Biochem, 2015, 37(4): 1527-36. doi: 10.1159/000438520

    [10]

    Apostolou P, Toloudi M, Ioannou E, et al. Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells[J]. J Recept Signal Transduct Res, 2013, 33(6): 353-8. doi: 10.3109/10799893.2013.828072

    [10] Apostolou P, Toloudi M, Ioannou E, et al. Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells[J]. J Recept Signal Transduct Res, 20 13, 33(6): 353-8.
    [11] Seymour T, Twigger AJ, Kakulas F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain[J]. Int J Mol Sci, 2015, 16(11): 27288-301.
    [11]

    Seymour T, Twigger AJ, Kakulas F. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain[J]. Int J Mol Sci, 2015, 16(11): 27288-301. doi: 10.3390/ijms161126024

    [12]

    Filipczyk A, Marr C, Hastreiter S, et al. Network plasticity of pluripotency transcription factors in embryonic stem cells[J]. Nat Cell Biol, 2015, 17(10): 1235-46. doi: 10.1038/ncb3237

    [12] Filipczyk A, Marr C, Hastreiter S, et al. Network plasticity of pluripotency transcription factors in embryonic stem cells[J]. Nat Cell Biol, 2015, 17(10): 1235-46.
    [13] Wang Y, Li Y, Liu X, et al. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents[J]. Curr Cancer Drug Targets, 2013, 13(5): 506-18.
    [13]

    Wang Y, Li Y, Liu X, et al. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents[J]. Curr Cancer Drug Targets, 2013, 13(5): 506-18. doi: 10.2174/15680096113139990033

    [14]

    Appari M, Babu KR, Kaczorowski A, et al. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition[J]. Int J Oncol, 2014, 45(4): 1391-400. http://cn.bing.com/academic/profile?id=2162562881&encoded=0&v=paper_preview&mkt=zh-cn

    [14] Appari M, Babu KR, Kaczorowski A, et al. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition[J]. Int J Oncol, 2014, 45(4): 1391-400.
    [15] Abassi Joozdani F, Yari F, Abassi Joozdani P, et al. Interaction of Sulforaphane with DNA and RNA[J]. PLoS One, 2015, 10(6): e0127541.
    [15]

    Abassi Joozdani F, Yari F, Abassi Joozdani P, et al. Interaction of Sulforaphane with DNA and RNA[J]. PLoS One, 2015, 10(6): e0127541. doi: 10.1371/journal.pone.0127541

图(4)  /  表(3)
计量
  • 文章访问数:  1499
  • HTML全文浏览量:  405
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2016-01-12
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2016-06-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭