[1] |
Zhang S, Mercado-Uribe I, Hanash S3, et al. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development[J]. PLoS One, 2013, 8(11): e80120.
|
[2] |
Karabudak AA, Hafner J, Shetty V, et al. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels[J]. J Cancer Res Clin Oncol, 2013, 139(10): 1757-70.
|
[3] |
Zhao D, Zhang W, Li XG, et al. Predicting clinical chemosensitivity of primary ovarian cancer using adenosine triphosphate-tumor chemosensitivity assay combined with detection of drug resistance genes[J]. Zhonghua Fu Chan Ke Za Zhi, 2011, 46(3): 193-8. [赵丹, 张伟, 李晓光, 等. 三磷酸腺苷-肿 瘤体外药敏试验联合耐药基因检测预测原发性卵巢癌的化疗 敏感性[J]. 中华妇产科杂志, 2011, 46(3): 193-8.]
|
[4] |
Ding Y, Yang M, She S, et al. iTRAQ-based quantitative proteomic analysis of cervical cancer[J]. Int J Oncol, 2015, 46(4): 1748-58.
|
[5] |
Fan G, Wrzeszczynski KO, Fu C. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines[J]. Biochem J, 2015, 465(3): 433-42.
|
[6] |
Li NY, Weber CE, Mi Z, et al. Osteopontin up-regulates critical epithelial-mesenchymal transition transcription factors to induce an aggressive breast cancer phenotype[J]. J Am Coll Surg, 2013, 21 7(1): 17-26.
|
[7] |
Hahne JC, Meyer SR, Kranke P, et al. Studies on the role of osteopontin-1 in endometrial cancer cell lines[J]. Strahlenther Onkol, 2013, 189(12): 1040-8.
|
[8] |
Koltai T. Clusterin: a key player in cancer chemoresistance and its inhibition[J]. Onco Targets Ther, 2014, 7: 447-56.
|
[9] |
Liu SL, Li HX. Over-expression of CLU and PKCα genes and their correlation with drug-resistance in human ovarian cancer tissue[J]. Xian Dai Fu Chan Ke Jin Zhan Za Zhi, 2010, 19(10): 73 5-8. [刘淑靓, 李红霞. CLU、PKCα基因过度表达与卵巢癌 化疗耐药相关的研究[J]. 现代妇产科进展杂志, 2010, 19(10): 73 5-8.]
|
[10] |
Zhang B, Zhang K, Liu Z, et al. Secreted Clusterin Gene Silencing enhances chemosensitivity of A549 cells to cisplatin through AKT and ERK1/2 pathways in vitro[J]. Cell Physiol Biochem, 2014, 33 (4): 1162-75.
|
[11] |
Lu J, Luo JH, Pang J, et al. Lentivirus-mediated RNA interference of clusterin enhances the chemosensitivity of EJ bladder cancer cells to epirubicin in vitro[J]. Mol Med Rep, 2012, 6(5): 1133-9.
|
[12] |
Wang L, Tang S, Wang Y, et al. Ecto-5'-nucleotidase (CD73) promotes tumor angiogenesis[J]. Clin Exp Metastasis, 2013, 30 (5): 671-80.
|
[13] |
Quezada C, Garrido W, Oyarzún C, et al. 5’-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells[J]. J Cell Physiol, 2013, 228(3): 602-8.
|
[14] |
Grozio A, Sociali G, Sturla L, et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells[J]. J Biol Chem, 2013, 288(36): 25 938-49.
|
[15] |
Zhi X, Wang Y, Zhou X, et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells[J]. Cancer Sci, 2010, 101(12): 2561-9.
|
[16] |
Hekmat O, Munk S, Fogh L, et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells[J]. J Proteome Res, 2013, 12(9): 4136-51.
|
[17] |
Zhu D, Zha X, Hu M, et al. High expression of TIMP-1 in human breast cancer tissues is a predictive of resistance to paclitaxelbased chemotherapy[J]. Med Oncol, 2012, 29(5): 3207-15.
|
[18] |
Fu ZY, Lv JH, Ma CY, et al. Tissue inhibitor of metalloproteinase-1 decreased chemosensitivity of MDA-435 breast cancer cells to chemotherapeutic drugs through the PI3K/AKT/NF-кB pathway[J]. Biomed Pharmacother, 2011, 65(3): 163-7.
|