高级搜索

应用iTRAQ多重化学标记串联质谱技术筛选晚期卵巢浆液性腺癌组织中卡铂耐药相关蛋白

张瑾, 李红霞

张瑾, 李红霞. 应用iTRAQ多重化学标记串联质谱技术筛选晚期卵巢浆液性腺癌组织中卡铂耐药相关蛋白[J]. 肿瘤防治研究, 2016, 43(1): 58-62. DOI: 10.3971/j.issn.1000-8578.2016.01.013
引用本文: 张瑾, 李红霞. 应用iTRAQ多重化学标记串联质谱技术筛选晚期卵巢浆液性腺癌组织中卡铂耐药相关蛋白[J]. 肿瘤防治研究, 2016, 43(1): 58-62. DOI: 10.3971/j.issn.1000-8578.2016.01.013
ZHANG Jin, LI Hongxia. Screening of Potential Proteins Associated with Carboplatin-resistance in Advanced Ovarian Serous Adenocarcinoma Tissues Using iTRAQ Technology[J]. Cancer Research on Prevention and Treatment, 2016, 43(1): 58-62. DOI: 10.3971/j.issn.1000-8578.2016.01.013
Citation: ZHANG Jin, LI Hongxia. Screening of Potential Proteins Associated with Carboplatin-resistance in Advanced Ovarian Serous Adenocarcinoma Tissues Using iTRAQ Technology[J]. Cancer Research on Prevention and Treatment, 2016, 43(1): 58-62. DOI: 10.3971/j.issn.1000-8578.2016.01.013

应用iTRAQ多重化学标记串联质谱技术筛选晚期卵巢浆液性腺癌组织中卡铂耐药相关蛋白

基金项目: 首都卫生发展科研专项项目(首发2011-2008-05)
详细信息
    作者简介:

    张瑾(1982-),女,博士,主治医师,主要从事妇科肿瘤的研究

    通讯作者:

    李红霞,E-mail: Lihx69@hotmail.com

  • 中图分类号: R737.3

Screening of Potential Proteins Associated with Carboplatin-resistance in Advanced Ovarian Serous Adenocarcinoma Tissues Using iTRAQ Technology

  • 摘要: 目的 利用同位素标记相对和绝对定量(iTRAQ) 技术筛选晚期卵巢癌组织中卡铂耐药相关差异表达蛋白,为临床个体化治疗奠定实验基础。方法 收集Ⅲ期低分化卵巢浆液性腺癌标本并通过ATP-TCA药敏试验检测卡铂敏感度。取卡铂敏感和耐药标本各15例, iTRAQ试剂标记,被标记的肽段进行高效液相色谱(HPLC)分离及质谱检测(MS)。结果 共鉴定出iTRAQ标记定量信息有755个显著差异表达的蛋白。卡铂耐药组与卡铂敏感组相比,上调1.2倍以上的蛋白429个;下调0.83倍以下的蛋白326个。上调蛋白中有osteopontin(OPN)、clusterin(CLU)、5'-nucleotidase(CD73)和tissue inhititor of metalloproteinases 1(TIMP1)等18个蛋白与肿瘤恶性行为及化疗耐药相关。结论 应用iTRAQ技术能筛选出多种与晚期卵巢癌卡铂耐药相关的差异表达蛋白,该技术对于肿瘤组织蛋白质组学的研究有很好的应用前景。

     

    Abstract: Objective To screen the proteins associated with carboplatin-resistance in advanced ovarian serous adenocarcinoma tissues using proteomics approaches of isobaric tags for relative and absolute quantification(iTRAQ) to provide experimental basis for clinically individual treatment. Methods The specimens of primary phase Ⅲ ovarian serous adenocarcinoma tissues were collected and tested for the sensitivity to carboplatin using adenosine triphosphate tumor chemosensitivity assay (ATP-TCA). Then the samples from 15 carboplatin-resistant specimens and 15 carboplatin-sensitive specimens were mixed with equal weight. Protein samples subjected to enzymatic digestion of trypsin were labeled with identical iTRAQ tags respectively, and then the labeled peptides were separated and analyzed via high performance liquid chromatography (HPLC) followed by mass spectrometry (MS). Results A total of 755 differentially expressed proteins were identified. Compared with carboplatin-sensitive group, 429 proteins were significantly up-regulated (>1.2-fold) and 326 proteins were significantly down-regulated (<0.83-fold) in carboplatinresistant ovarian cancer tissues. Among these up-regulated proteins, 18 proteins were associated with tumor malignant behavior and chemoresistance, including Osteopontin (OPN), Clusterin (CLU), 5'-nucleotidase (CD73) and tissue inhibitor of metalloproteinases 1(TIMP1). Conclusion The differentially expressed proteins in carboplatin-resistant ovarian cancer tissues are identified by proteomic analysis using iTRAQ technology. The iTRAQ technology provides a good platform for the study of tumor proteomics.

     

  • [1] Zhang S, Mercado-Uribe I, Hanash S3, et al. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development[J]. PLoS One, 2013, 8(11): e80120.
    [2] Karabudak AA, Hafner J, Shetty V, et al. Autoantibody biomarkers identified by proteomics methods distinguish ovarian cancer from non-ovarian cancer with various CA-125 levels[J]. J Cancer Res Clin Oncol, 2013, 139(10): 1757-70.
    [3] Zhao D, Zhang W, Li XG, et al. Predicting clinical chemosensitivity of primary ovarian cancer using adenosine triphosphate-tumor chemosensitivity assay combined with detection of drug resistance genes[J]. Zhonghua Fu Chan Ke Za Zhi, 2011, 46(3): 193-8. [赵丹, 张伟, 李晓光, 等. 三磷酸腺苷-肿 瘤体外药敏试验联合耐药基因检测预测原发性卵巢癌的化疗 敏感性[J]. 中华妇产科杂志, 2011, 46(3): 193-8.]
    [4] Ding Y, Yang M, She S, et al. iTRAQ-based quantitative proteomic analysis of cervical cancer[J]. Int J Oncol, 2015, 46(4): 1748-58.
    [5] Fan G, Wrzeszczynski KO, Fu C. A quantitative proteomics-based signature of platinum sensitivity in ovarian cancer cell lines[J]. Biochem J, 2015, 465(3): 433-42.
    [6] Li NY, Weber CE, Mi Z, et al. Osteopontin up-regulates critical epithelial-mesenchymal transition transcription factors to induce an aggressive breast cancer phenotype[J]. J Am Coll Surg, 2013, 21 7(1): 17-26.
    [7] Hahne JC, Meyer SR, Kranke P, et al. Studies on the role of osteopontin-1 in endometrial cancer cell lines[J]. Strahlenther Onkol, 2013, 189(12): 1040-8.
    [8] Koltai T. Clusterin: a key player in cancer chemoresistance and its inhibition[J]. Onco Targets Ther, 2014, 7: 447-56.
    [9] Liu SL, Li HX. Over-expression of CLU and PKCα genes and their correlation with drug-resistance in human ovarian cancer tissue[J]. Xian Dai Fu Chan Ke Jin Zhan Za Zhi, 2010, 19(10): 73 5-8. [刘淑靓, 李红霞. CLU、PKCα基因过度表达与卵巢癌 化疗耐药相关的研究[J]. 现代妇产科进展杂志, 2010, 19(10): 73 5-8.]
    [10] Zhang B, Zhang K, Liu Z, et al. Secreted Clusterin Gene Silencing enhances chemosensitivity of A549 cells to cisplatin through AKT and ERK1/2 pathways in vitro[J]. Cell Physiol Biochem, 2014, 33 (4): 1162-75.
    [11] Lu J, Luo JH, Pang J, et al. Lentivirus-mediated RNA interference of clusterin enhances the chemosensitivity of EJ bladder cancer cells to epirubicin in vitro[J]. Mol Med Rep, 2012, 6(5): 1133-9.
    [12] Wang L, Tang S, Wang Y, et al. Ecto-5'-nucleotidase (CD73) promotes tumor angiogenesis[J]. Clin Exp Metastasis, 2013, 30 (5): 671-80.
    [13] Quezada C, Garrido W, Oyarzún C, et al. 5’-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells[J]. J Cell Physiol, 2013, 228(3): 602-8.
    [14] Grozio A, Sociali G, Sturla L, et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells[J]. J Biol Chem, 2013, 288(36): 25 938-49.
    [15] Zhi X, Wang Y, Zhou X, et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells[J]. Cancer Sci, 2010, 101(12): 2561-9.
    [16] Hekmat O, Munk S, Fogh L, et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells[J]. J Proteome Res, 2013, 12(9): 4136-51.
    [17] Zhu D, Zha X, Hu M, et al. High expression of TIMP-1 in human breast cancer tissues is a predictive of resistance to paclitaxelbased chemotherapy[J]. Med Oncol, 2012, 29(5): 3207-15.
    [18] Fu ZY, Lv JH, Ma CY, et al. Tissue inhibitor of metalloproteinase-1 decreased chemosensitivity of MDA-435 breast cancer cells to chemotherapeutic drugs through the PI3K/AKT/NF-кB pathway[J]. Biomed Pharmacother, 2011, 65(3): 163-7.
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  337
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-15
  • 修回日期:  2015-06-14
  • 刊出日期:  2016-01-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭