[1] |
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
|
[2] |
Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia[J]. N Engl J Med, 2006, 354(2): 166-178.
|
[3] |
Wiemels J. Perspectives on the causes of childhood leukemia[J]. Chem Biol Interact, 2012, 196(3): 59-67.
|
[4] |
Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia[J]. Lancet, 2013, 381(9881): 1943-55.
|
[5] |
Metayer C, Milne E, Dockerty JD, et al. Maternal supplementation with folic Acid and other vitamins and risk of leukemia in offspring: a childhood leukemia international consortium study[J]. Epidemiology, 2014, 25(6): 811-22.
|
[6] |
St e rn LL, Ma son JB, Se lhub J , e t al. Genomi c DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene[J]. Cancer Epidemiol Biomarkers Prev, 2000, 9(8): 849-53.
|
[7] |
Yamada K, Gravel RA, Toraya T, et al. Human methionine synthase reductase is a molecular chaperone for human methionine synthase[J]. Proc Natl Acad Sci USA, 2006, 103(25): 9476-81.
|
[8] |
Wilson A, Platt R, Wu Q, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida[J]. Mol Genet Metab, 1999, 67(4): 31 7-23.
|
[9] |
Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase[J]. Biochemistry, 2002, 41 (45): 13378-85.
|
[10] |
Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations[J]. Atherosclerosis, 2001, 157(2): 451-6.
|
[11] |
Geisel J, Zimbelmann I, Schorr H, et al. Genetic defects as important factors for moderate hyperhomocysteinemia[J]. Clin Chem Lab Med, 2001, 39(8): 698-704.
|
[12] |
Jiang S, Zhao R, Pan M, et al. Associations of MTHFR and MTRR polymorphisms with serum lipid levels in Chinese hypertensive patients[J]. Clin Appl Thromb Hemost, 2014, 20(4): 400-10.
|
[13] |
Yu D, Yang L, Shen S, et al. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies[J]. Pediatr Cardiol, 2014, 35(7): 1091-8.
|
[14] |
Zhou D, Mei Q, Luo H, et al. The polymorphisms in methylenetetr ahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer[J]. Int J Biol Sci, 2012, 8( 6): 819-30.
|
[15] |
Lupo PJ, Nousome D, Kamdar KY, et al. A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia[J]. Cancer Causes Control, 2012, 23 (11): 1797-803.
|
[16] |
Gra OA, Glotov AS, Kozhekbaeva Zhm, et al. Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia[J]. Mol Biol (Mosk), 2008, 42(2): 21 4-25.
|
[17] |
Yang L, Liu L, Wang J, et al. Polymorphisms in folate-related genes: impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese[J]. Leuk Lymphoma, 2011, 52(9): 1770-6.
|
[18] |
Metayer C, Scélo G, Chokkalingam AP, et al. Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia[J]. Cancer Causes Control, 2011, 22(9): 1243-58.
|
[19] |
Lautner-Csorba O, Gézsi A, Erdélyi DJ, et al. Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by Bayesian relevance and effect size analysis[J]. PLoS One, 2013, 8(8): e69843.
|
[20] |
Amigou A, Rudant J, Orsi L, et al. Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: the ESCALE study (SFCE) [J]. Cancer Causes Control, 20 12, 23(8): 1265-77.
|
[21] |
de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia[J]. Blood, 2009, 113(10): 2284-9.
|
[22] |
Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children[J]. Leuk Lymphoma, 2007, 48(4): 786-92.
|
[23] |
Gast A, Bermejo JL, Flohr T, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study[J]. Leukemia, 2007, 21(2): 320-5.
|
[24] |
Leclerc D, Wilson A, Dumas R, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria[J]. Proc Natl Acad Sci USA, 19 98, 95(6): 3059-64.
|
[25] |
Olteanu H, Banerjee R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation[J]. J Biol Chem, 2001, 276(38): 35558-63.
|
[26] |
Kwak SY, Kim UK, Cho HJ, et al. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population[J]. Anticancer Res, 2008, 28(5A): 2807-11.
|
[27] |
Weiner AS, Beresina OV, Voronina EN, et al. Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin’s lymphoma[J]. Leuk Res, 2011, 35(4): 508-15.
|
[28] |
Hu S, Liu HC, Xi SM. Methionine synthase reductase A66G polymorphism is not associated with breast cancer susceptibility - a meta-analysis[J]. Asian Pac J Cancer Prev, 2014, 15(7): 3267-71.
|