高级搜索

MTRR基因A66G多态性与儿童急性淋巴细胞白血病关系的Meta分析

马利敏, 阮林海, 刘洪超, 冯艳铭, 杨海平

马利敏, 阮林海, 刘洪超, 冯艳铭, 杨海平. MTRR基因A66G多态性与儿童急性淋巴细胞白血病关系的Meta分析[J]. 肿瘤防治研究, 2015, 42(08): 824-828. DOI: 10.3971/j.issn.1000-8578.2015.08.016
引用本文: 马利敏, 阮林海, 刘洪超, 冯艳铭, 杨海平. MTRR基因A66G多态性与儿童急性淋巴细胞白血病关系的Meta分析[J]. 肿瘤防治研究, 2015, 42(08): 824-828. DOI: 10.3971/j.issn.1000-8578.2015.08.016
MA Limin, RUAN Linhai, LIU Hongchao, FENG Yanming, YANG Haiping. MTRR Gene A66G Polymorphism and Pediatric Acute Lymphoblastic Leukemia: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2015, 42(08): 824-828. DOI: 10.3971/j.issn.1000-8578.2015.08.016
Citation: MA Limin, RUAN Linhai, LIU Hongchao, FENG Yanming, YANG Haiping. MTRR Gene A66G Polymorphism and Pediatric Acute Lymphoblastic Leukemia: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2015, 42(08): 824-828. DOI: 10.3971/j.issn.1000-8578.2015.08.016

MTRR基因A66G多态性与儿童急性淋巴细胞白血病关系的Meta分析

详细信息
    作者简介:

    马利敏(1990-),女,硕士在读,主要从事白血病分子病理机制及循证医学研究

  • 中图分类号: R733.71;R551

MTRR Gene A66G Polymorphism and Pediatric Acute Lymphoblastic Leukemia: A Meta-analysis

  • 摘要: 目的 评估甲硫氨酸合成酶还原酶(MTRR)基因A66G多态性与儿童急性淋巴细胞白血病(ALL)发生风险的关系。方法 全面检索PubMed、Elsevier、Embase、中文期刊全文数据库(CNKI)和万方数据库,收集探索MTRR基因A66G多态性与儿童ALL发生关系的病例对照研究,纳入符合入选标准的文献并评估其质量。优势比(ORs)及95%可信区间(CIs)评估关联强度。应用RevMan 5.2软件对纳入研究进行异质性检验和效应值合并,漏斗图评估发表性偏倚,敏感性分析采用逐一排除的方法以评估结果的稳定性。结果 共纳入7篇文献,包括儿童ALL患者2 326例,对照3 090例。异质性检验结果表明纳入研究间无显著异质性,采用固定效应模型合并数据。Meta分析结果示,在整体人群纯合子模型和显性模型发现MTRR A66G多态性与儿童ALL风险有关联(GG vs. AA: OR=0.81, 95%CI: 0.69~0.95, P=0.009; AG+GG vs. AA: OR=0.87, 95%CI: 0.77~0.98, P=0.03);根据种族 进行亚组分析时在白种人群中发现显著性关联(AG vs. AA: OR=0.84, 95%CI: 0.72~0.99, P=0.04; GG vs. AA: OR=0.79, 95%CI: 0.66~0.95, P=0.01; AG+GG vs. AA: OR=0.82, 95%CI: 0.71~0.96, P=0.01)。漏斗图未检测出显著性发表性偏倚,敏感性分析表明结果稳定可靠。结论 目前Meta分析表明MTRR基因A66G多态性与儿童ALL发生风险存在关联,尤其在白种人群。

     

    Abstract: Objective To evaluate the relationship between methionine synthase reductase(MTRR) A66G genetic polymorphism and the risk of pediatric acute lymphoblastic leukemia(ALL). Methods Relevant literatures were extensively searched in PubMed, Elsevier, Embase, China National Knowledge Infrastructure and Wanfang Databases for collecting the case-control studies investigating the relationship between MTRR A66G genetic polymorphism and pediatric ALL. Odds ratios(ORs) with 95% confidence intervals(CIs) were applied to assess the strength of association. The RevMan 5.2 software was applied for heterogeneity test and combined ORs and their 95%CIs calculation. Publication bias was assessed through funnel plot and sensitivity analysis was performed by sequential remove individual studies to assess the stability of the results. Results Seven studies bearing 2,326 cases and 3,090 controls met the inclusion criteria and were included in the Meta-analysis. There was no significant heterogeneity among the included studies and fixed-effects model was applied to combine the data. The results suggested that there was significant association between MTRR A66G polymorphism and pediatric ALL risk in overall comparisons under homozygote and dominant genetic models(GG vs. AA: OR=0.81, 95%CI: 0.69-0.95, P=0.009; AG+GG vs. AA: OR=0.87, 95%CI: 0.77-0.98, P=0.03). In the subgroup analysis by ethnicity, significant association was found in Caucasians (AG vs. AA: OR=0.84, 95%CI: 0.72-0.99, P=0.04; GG vs. AA: OR=0.79, 95%CI: 0.66-0.95, P=0.01; AG+GG vs. AA: OR=0.82, 95%CI: 0.71-0.96, P=0.01). No significant publication bias was detected by funnel plot and sensitivity analysis suggested the robustness of the results. Conclusion The present Meta-analysis suggests that MTRR A66G polymorphism is associated with pediatric ALL risk, especially in Caucasian populations.

     

  • [1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
    [2] Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia[J]. N Engl J Med, 2006, 354(2): 166-178.
    [3] Wiemels J. Perspectives on the causes of childhood leukemia[J]. Chem Biol Interact, 2012, 196(3): 59-67.
    [4] Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia[J]. Lancet, 2013, 381(9881): 1943-55.
    [5] Metayer C, Milne E, Dockerty JD, et al. Maternal supplementation with folic Acid and other vitamins and risk of leukemia in offspring: a childhood leukemia international consortium study[J]. Epidemiology, 2014, 25(6): 811-22.
    [6] St e rn LL, Ma son JB, Se lhub J , e t al. Genomi c DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene[J]. Cancer Epidemiol Biomarkers Prev, 2000, 9(8): 849-53.
    [7] Yamada K, Gravel RA, Toraya T, et al. Human methionine synthase reductase is a molecular chaperone for human methionine synthase[J]. Proc Natl Acad Sci USA, 2006, 103(25): 9476-81.
    [8] Wilson A, Platt R, Wu Q, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida[J]. Mol Genet Metab, 1999, 67(4): 31 7-23.
    [9] Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase[J]. Biochemistry, 2002, 41 (45): 13378-85.
    [10] Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations[J]. Atherosclerosis, 2001, 157(2): 451-6.
    [11] Geisel J, Zimbelmann I, Schorr H, et al. Genetic defects as important factors for moderate hyperhomocysteinemia[J]. Clin Chem Lab Med, 2001, 39(8): 698-704.
    [12] Jiang S, Zhao R, Pan M, et al. Associations of MTHFR and MTRR polymorphisms with serum lipid levels in Chinese hypertensive patients[J]. Clin Appl Thromb Hemost, 2014, 20(4): 400-10.
    [13] Yu D, Yang L, Shen S, et al. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies[J]. Pediatr Cardiol, 2014, 35(7): 1091-8.
    [14] Zhou D, Mei Q, Luo H, et al. The polymorphisms in methylenetetr ahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer[J]. Int J Biol Sci, 2012, 8( 6): 819-30.
    [15] Lupo PJ, Nousome D, Kamdar KY, et al. A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia[J]. Cancer Causes Control, 2012, 23 (11): 1797-803.
    [16] Gra OA, Glotov AS, Kozhekbaeva Zhm, et al. Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia[J]. Mol Biol (Mosk), 2008, 42(2): 21 4-25.
    [17] Yang L, Liu L, Wang J, et al. Polymorphisms in folate-related genes: impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese[J]. Leuk Lymphoma, 2011, 52(9): 1770-6.
    [18] Metayer C, Scélo G, Chokkalingam AP, et al. Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia[J]. Cancer Causes Control, 2011, 22(9): 1243-58.
    [19] Lautner-Csorba O, Gézsi A, Erdélyi DJ, et al. Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by Bayesian relevance and effect size analysis[J]. PLoS One, 2013, 8(8): e69843.
    [20] Amigou A, Rudant J, Orsi L, et al. Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: the ESCALE study (SFCE) [J]. Cancer Causes Control, 20 12, 23(8): 1265-77.
    [21] de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia[J]. Blood, 2009, 113(10): 2284-9.
    [22] Petra BG, Janez J, Vita D. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children[J]. Leuk Lymphoma, 2007, 48(4): 786-92.
    [23] Gast A, Bermejo JL, Flohr T, et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study[J]. Leukemia, 2007, 21(2): 320-5.
    [24] Leclerc D, Wilson A, Dumas R, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria[J]. Proc Natl Acad Sci USA, 19 98, 95(6): 3059-64.
    [25] Olteanu H, Banerjee R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation[J]. J Biol Chem, 2001, 276(38): 35558-63.
    [26] Kwak SY, Kim UK, Cho HJ, et al. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population[J]. Anticancer Res, 2008, 28(5A): 2807-11.
    [27] Weiner AS, Beresina OV, Voronina EN, et al. Polymorphisms in folate-metabolizing genes and risk of non-Hodgkin’s lymphoma[J]. Leuk Res, 2011, 35(4): 508-15.
    [28] Hu S, Liu HC, Xi SM. Methionine synthase reductase A66G polymorphism is not associated with breast cancer susceptibility - a meta-analysis[J]. Asian Pac J Cancer Prev, 2014, 15(7): 3267-71.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-23
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭