高级搜索

乳腺癌外周血中分子检测标记的筛选

叶云, 钟英英, 孙宇飞, 张倩

叶云, 钟英英, 孙宇飞, 张倩. 乳腺癌外周血中分子检测标记的筛选[J]. 肿瘤防治研究, 2015, 42(07): 656-661. DOI: 10.3971/j.issn.1000-8578.2015.07.004
引用本文: 叶云, 钟英英, 孙宇飞, 张倩. 乳腺癌外周血中分子检测标记的筛选[J]. 肿瘤防治研究, 2015, 42(07): 656-661. DOI: 10.3971/j.issn.1000-8578.2015.07.004
YE Yun, ZHONG Yingying, SUN Yufei, ZHANG Qian. Identification of Gene Signature in Peripheral Blood of Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 656-661. DOI: 10.3971/j.issn.1000-8578.2015.07.004
Citation: YE Yun, ZHONG Yingying, SUN Yufei, ZHANG Qian. Identification of Gene Signature in Peripheral Blood of Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 656-661. DOI: 10.3971/j.issn.1000-8578.2015.07.004

乳腺癌外周血中分子检测标记的筛选

基金项目: 广西青年科学基金项目(2012GXNSFBA053016),广西科技大学博士基金项目(12z01)
详细信息
    作者简介:

    叶云(1978- ),男,博士,副教授,主要从事基因芯片应用的研究

  • 中图分类号: R737.9

Identification of Gene Signature in Peripheral Blood of Breast Cancer

  • 摘要: 目的 对乳腺癌患者和健康者血液样本的基因表达谱进行分析,从中发现检测乳腺癌的分子标记。 方法 以公共数据库GEO中表达谱数据GSE11545作为训练集,利用BRB-ArrayTools软件提取乳腺癌/正常血液样本的差异表达基因作为候选基因,选取两组间差异水平小于0.001的基因,通过复合变量预测、对角线线性判别分析、最邻近算法和支持向量机四种不同的方法对验证集GSE27562中的样本进行分类预测,留一法交叉验证计算错误分类率,ROC曲线评估预测结果。结果 训练集中乳腺癌与正常血液样本的显著差异基因为61个,从中筛选出39个基因作为分类器,四种不同的方法对验证集进行的分类预测准确率都基本达到甚至超过80%,ROC曲线下面积达到0.925,表明分类预测效果良好。结论 基因芯片分析可以筛选出外周血中乳腺癌的分子标记,有望为乳腺癌的早期临床检测提供一种新的方法。

     

    Abstract: Objective To find out molecular signature in breast cancer(BC) for early detection by analyzing the gene expression profile in the peripheral blood of BC and healthy samples. Methods GSE11545 from GEO database was taken as training cohort in this paper. Differentially expressed genes between BC and healthy samples were obtained by BRB-ArrayTools software. And these genes were used as candidate genes to predict classification in validation cohort GSE27562 by four methods including compound covariate predictor, diagonal linear discriminant analysis, 3-nearest neighbors and support vector machine. Only genes significantly differed between the classes at 0.001 significance level were used for class prediction. Leave-oneout cross-validation method was used to compute mis-classification rate. Result of prediction was assessed with receiver operating characteristic(ROC) curve. Results Sixty-one differential genes were obtained from the training cohort. 39-gene classifier was used to predict validation cohort. The accuracy rate of classification reached or exceeded 80% with four methods. Areas under ROC curve were 0.925. The methods showed satisfactory classification result. Conclusion Microarray analysis is an effective method in screening gene signature in the peripheral blood of BC. It may provide a new method for diagnosing breast cancer in early stage.

     

  • [1] Mo M, Liu GY, Lv LL, et al. Advances in breast cancer screening program[J]. Zhong Liu, 2012, 32(9): 748-54. [莫淼, 柳光宇, 吕力琅, 等. 乳腺癌筛查研究进展[J]. 肿瘤, 2012, 32(9): 748-54.]
    [2] Bundred NJ. Prognostic and predictive factors in breast cancer[J]. Cancer Treat Rev, 2001, 27(3): 137-42.
    [3] Fisher B. From Halsted to prevention and beyond: advances in the management of breast cancer during the twentieth century[J]. Eur J Cancer, 1999, 35(14): 1963-73.
    [4] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J]. Int J Cancer, 2010, 12 7(12): 2893-917.
    [5] Smetherman DH. Screening, imaging, and image-guided biopsy techniques for breast cancer[J]. Surg Clin North Am, 2013, 93(2): 30 9-27.
    [6] Huang XQ, Zeng H. Correlation between gene expression profiles of adenocarcinoma of esophagus and Barrett's esophagus[J]. Zhong Liu Fang Zhi Yan Jiu, 2009, 36(8): 639-42. [黄绪群, 曾辉. 食管腺癌与Barrett’s食管基因表达谱的研究[J]. 肿瘤防治研究, 20 09, 36(8): 639-42.]
    [7] Kuasela P, Haglund C, Ruberts PJ. Comparison of a new tumour marker CA242 with CA19-9, CA50 and carcinoembryonic antigen (CEA) in digestive tract disease[J]. Br J Cancer, 1991, 63 (4) : 636-40.
    [8] Chinese Society of Laboratory Medicine, National Center for Clinical Laboratories, Editorial Committee of Chinese Journal of Laboratory Medicine. Advice of tumor markers in clinical application[J]. Zhonghua Jian Yan Yi Xue Za Zhi, 2012, 35(2): 10 3-16. [中华医学会检验分会, 卫生部临床检验中心, 中华检 验医学杂志编辑委员会.肿瘤标志物的临床应用建议[J]. 中华 检验医学杂志, 2012, 35(2): 103-16.]
    [9] Sha L, Cao Y, Shi L. Usefulness of tumor markers CA153, CA125, CEA and AFP in early diagnosis of breast tumor by ROC curve[J]. Guo Ji Jian Yan Yi Xue Za Zhi, 2007, 28(11): 1039-40. [沙玲, 曹 研, 施莉. 应用ROC曲线对肿瘤标志物CA153、CA125、CEA 和AFP在乳腺肿瘤早期诊断中的应用价值评价[J]. 国际检验医 学杂志, 2007, 28(11): 1039-40.]
    [10] Zhang H, Xiang MJ, Mao SL, et al. The clinical value of the combined measurement of three serum tumor markers in breast cancer[J]. Zhongguo Shi Yan Zhen Duan Xue, 2011, 15(1): 96-8. [张华, 项明洁, 毛顺露, 等. 三项肿瘤标志物联合检测在乳腺癌 诊断中的价值[J]. 中国实验诊断学, 2011, 15(1): 96-8.]
    [11] Shen Q, Song GH, Zhang JX, et al. Comprehensive evaluation of the diagnostic value of contrast-enhanced sonography for breast cancer by ROC curve and logistic regression[J]. Shi Yong Yi Xue Za Zhi, 2009, 25(7): 1058-60. [沈嫱, 宋光辉, 张建兴, 等. Logistic回归及ROC曲线综合评价超声造影对乳腺癌的诊断 [J] 实用医学杂志, 2009, 25(7): 1058-60.]
    [12] Karn T, Metzler D, Ruckhäberle E, et al. Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer[J]. Breast Cancer Res Treat, 2010, 12 0(3): 567-79.
    [13] Rody A, Karn T, Ruckhäberle E, et al. Gene expression of topoisomerase II alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor (ER) positive breast cancer[J]. Breast Cancer Res Treat, 2009, 113(3): 457-66.
    [14] Tilanus-Linthorst M, Verhoog L, Obdeijn IM, et al. A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography[J]. Int J Cancer, 2002, 102(1): 91-5.
    [15] Hong X, Zhang YQ. Progress on JAK-STAT signaling pathway in cancer research[J]. Ji Chu Yi Xue Yu Lin Chuang, 2011, 31(4): 46 3-6. [洪璇, 张艳桥. JAK-STAT信号传导通路在肿瘤中的进 展[J] 基础医学与临床, 2011, 31(4): 463-6.]
    [16] Zeng L. Progress on MARK signaling pathway in invasion and metastasis of tumor[J]. Zhong Liu Fang Zhi Yan Jiu, 2002, 29(5): 91 4-6. [曾亮. MAPK信号通路与肿瘤侵袭和转移研究进展[J]. 肿瘤防治研究, 2002, 29(5): 914-6.]
    [17] Xie BC, Li GL. Wnt gene/Wnt signaling pathway in breast cancer[J]. Zhongguo Sheng Wu Hua Xue Yu Fen Zi Sheng Wu Xue Bao, 2011, 27(2): 125-9. [谢碧琛, 李国利. Wnt基因/Wnt 通路与乳腺癌[J]. 中国生物化学与分子生物学报, 2011, 27(2): 12 5-9.]
计量
  • 文章访问数:  1258
  • HTML全文浏览量:  348
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-19
  • 修回日期:  2015-01-26
  • 刊出日期:  2015-07-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭