高级搜索

应用蛋白芯片检测CIK细胞与其培养上清蛋白谱的改变

唐 慧, 董 虹, 李 丽, 王金丽, 王林坪, 左荣霞, 高建梅, 华映坤, 严新民

唐 慧, 董 虹, 李 丽, 王金丽, 王林坪, 左荣霞, 高建梅, 华映坤, 严新民. 应用蛋白芯片检测CIK细胞与其培养上清蛋白谱的改变[J]. 肿瘤防治研究, 2013, 40(12): 1156-1162. DOI: 10.3971/j.issn.1000-8578.2013.12.011
引用本文: 唐 慧, 董 虹, 李 丽, 王金丽, 王林坪, 左荣霞, 高建梅, 华映坤, 严新民. 应用蛋白芯片检测CIK细胞与其培养上清蛋白谱的改变[J]. 肿瘤防治研究, 2013, 40(12): 1156-1162. DOI: 10.3971/j.issn.1000-8578.2013.12.011
TANG Hui, DONG Hong, LI Li, WANG Jinli, WANG Linping, ZUO Rongxia, GAO Jianmei, HUA Yingkun, YAN Xinmin. Protein Profi ling of CIK Cell and Its Supernatant Detected by Protein Chip Technology[J]. Cancer Research on Prevention and Treatment, 2013, 40(12): 1156-1162. DOI: 10.3971/j.issn.1000-8578.2013.12.011
Citation: TANG Hui, DONG Hong, LI Li, WANG Jinli, WANG Linping, ZUO Rongxia, GAO Jianmei, HUA Yingkun, YAN Xinmin. Protein Profi ling of CIK Cell and Its Supernatant Detected by Protein Chip Technology[J]. Cancer Research on Prevention and Treatment, 2013, 40(12): 1156-1162. DOI: 10.3971/j.issn.1000-8578.2013.12.011

应用蛋白芯片检测CIK细胞与其培养上清蛋白谱的改变

基金项目: 云南省肿瘤转化医学工程技术研究中心基金(2011DH011);云南省中青年学术技术带头人后备人才培养基金(2013HB083)
详细信息
    作者简介:

    唐慧(1976-),女,硕士,副教授,主要从事肿瘤生物治疗和肿瘤分子机制的基础研究

    通讯作者:

    严新民,E-mail:yxmin08@163.com

  • 中图分类号: R73-36+2

Protein Profi ling of CIK Cell and Its Supernatant Detected by Protein Chip Technology

  • 摘要: 目的 应用蛋白芯片技术检测不同患者来源的细胞因子诱导的杀伤细胞 (cytokine induced killer, CIK)细胞裂解液和培养上清的蛋白谱改变。方法 将3例不同患者来源的人外周血单个核细胞(peripheral blood mononuclear cell, PBMC)在体外经细胞因子诱导成CIK细胞,经流式细胞术测定细胞表型后,分别收集培养第20天的CIK细胞和细胞培养上清,应用AAH-BLM-1蛋白芯片分别获得CIK 细胞裂解液和细胞培养上清中507个蛋白的改变。结果 CIK细胞在培养第20天,CD3+和CD3+CD56+的T细胞分别为(86.43±10.65)%和(38.58±3.94)%。CIK细胞培养上清液中共有6个蛋白明显升高(Signal≥700, FC≥1.8):MIP-1β (FC=21.28)、GzmA (FC=5.54)、IFN-?(FC=2.78)、MCP-1 (FC=2.22)、TMPO (FC=2.05)、IL-13 (FC=1.81);细胞裂解液共有8个蛋白明显升高(Signal≥700):GzmA (Signal=1 968.77)、ET (Signal=1,398.60)、IL-13 (Signal=1 333.47)、TFPI (Signal=959.76)、N R G 3 ( S i g n a l = 9 4 4 . 0 9 ) 、I L -7 ( S i g n a l = 8 6 7 . 1 2 ) 、M I P -1 α ( S i g n a l = 8 3 3 . 4 3 ) 、M I P - 1 β(Signal=704.88)。将上述两组结果对比分析后发现GzmA、IL-13和MIP-1β这3个蛋白在两组中均明显升高。结论 CIK细胞在活化过程中合成并分泌如GzmA、IFN-γ、IL-8和IL-13等间接杀伤肿瘤细胞并促进T细胞增殖活化在抗肿瘤治疗中发挥重要作用。多种蛋白产物,这些蛋白产物通过直/间接杀伤肿瘤细胞并促进T细胞增殖活化在抗肿瘤治疗中发挥重要作用。

     

    Abstract: Objective Protein profi ling was detected both in cells lysates and culture supernatant of cytokine induced killer (CIK) cells from different patients by protein chip technology. Methods The peripheral blood mononuclear cells (PBMC) of 3 tumor patients were stimulated by different cytokines and induced into CIK cells in vitro. The phenotypes of CIK cells were analyzed by fl ow cytometry. CIK cells and culture supernatant was collected respectively after cultured for 20 days. Expression changes of 507 proteins were detected either in cells lysates or in cell culture supernatant by AAH-BLM-1 protein chip technology. Results The percentages of CD3+ and CD3+CD56+ were (86.43±10.65)% and (38.58±3.94)% respectively after CIK cells expanding for 20 days. Six proteins were increased signifi cantly in cell culture supernatant (signal ≥700, FC≥1.8): MIP - 1 β (FC=21.28), GzmA (FC=5.54), IFN- ? (FC=2.78), MCP - 1 (FC=2.22), TMPO (FC=2.05), IL - 13 (FC=1.81). Eight proteins were increased significantly in cells lysates (signal≥700): GzmA (signal=1,968.77), ET (signal=1,398.60), IL - 13 (signal=1,333.47), TFPI (signal=959.76), NRG3 (signal=944.09), IL - 7 (signal=867.12), MIP - 1α (signal=833.43), MIP - 1β (signal=704.88). Three proteins of GzmA, IL-13 and MIP-1β were increased significantly both in two groups. Conclusion CIK cells synthesize and release a variety of protein products during the process of activation, such as GzmA, IFN-γ, IL-8, IL-13, etc. These proteins play important roles of anti-tumor by killing tumor cells directly / indirectly and promoting the proliferation and activation of T cells.

     

  • [1] Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodefi ciency [J] J Immunol, 1994, 153 (4):1687-96.
    [2] Baker J, Verneris MR, Ito M, et al. Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production [J]. Blood, 20 01, 97(10): 2923-31.
    [3] Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells [J]. Blood,2004,103(8):3065-72.
    [4] Leemhuis T, Wells S, Scheffold C, et al. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma[J]. Biol Blood Marrow Transplant, 2005, 11(3):181-7.
    [5] Terao I, Hashimoto S, Horie T. Effect of GM-CSF on TNF-alpha and IL-1-beta production by alveolar macrophages and peripheral blood monocytes from patients with sarcoidosis [J]. Int Arch Allergy Immunol, 1993, 102(3): 242-8.
    [6] Stavik B, Skretting G, Aasheim HC, et al. Down-regulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility [J]. BMC Cancer,2011,11:357.
    [7] Pardo J, Balkow S, Anel A, et al. Granzymes are essential for natural killer cell-mediated and perf-facilitated tumor control [J]. Eur J Immunol, 2002, 32(10): 2881-7.
    [8] Metha BA, Schmidt-Wolf IG, Weissman IL, et al. Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3+CD56+killer cells [J]. Blood, 19 95, 86(9):3493-9.
    [9] Grossman WJ, Verbsky JW, Tollefsen BL, et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells[J].Blood,2004,104(9): 2840-8.
    [10] Linn YC, Hui KM. Cytokine-induced NK-like T cells: from bench to bedside [J]. J Biomed Biotechnol, 2010,2010:435745.
    [11] Nishimura R, Baker J, Beilhack A, et al. In vivo traffi cking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity [J]. Blood, 2008, 11 2(6):2563-74.
    [12] Hontscha C, Borck Y, Zhou H,et al. Clinical trials on CIK cells: fi rst report of the international registry on CIK cells (IRCC) [J]. J Cancer Res Clin Oncol,2011,137(2): 305-10.
    [13] Zoll B, Lefterova P, Csipai M, et al. Generation of cytokineinduced killer cells using exogenous interleukin-2,-7 or -12 [J]. Cancer Immunol Immunother,1998,47(4): 221-6.
    [14] Verneris MR, Komacker M, Mailänder V, et al. Resistance of ex vivo expanded CD3+CD56+ T cells to Fas-mediated apoptosis [J].Cancer Immunol Immunother, 2000, 49(6): 335-45.
    [15] Finker S, Trojaneck B, Lefferova P, et al. Increase of proliferation rate and enhancement of antitumor cytotoxicity of expanded human CD3+CD56+ immunologic effector cells by receptor mediated transfection with the interleukin-7 gene [J]. Gene Ther, 19 98, 5(1): 31-9.
    [16] Holy C, Bang CD, Chang P, et al. Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo effi cacy in severe combined immunodeficiency disease mice[J]. Blood,1998,92(9): 3318-27.
    [17] Gütgemann S, Frank S, Strehl J, et al. Cytokine-induced killer cells are type II natural killer T cells [J]. Ger Med Sci, 2007, 5: Doc07.
    [18] Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity [J]. Nat Med, 2002, 8(6): 56 7-73.
    [19] Lemos MP, Fan L, Lo D, et al. CD8alpha+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity [J] J Immunol, 2003, 171(10): 5077-84.
    [20] van der Veen RC. Nitric oxide and T helper cell immunity [J]. Int Immunopharmacol, 2001, 1(8): 1491-500.
    [21] Mita Y,Dobashi K,Endou K,et al. Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4[J]. Immunol Lett, 2002, 81(1):71-5.
    [22] Kikuchi T, Crystal RG. Antigen-pulsed dendritic cells expressing macrophage-derived chemokine elicit Th2 responses and promote specifi c humoral immunity[J]. J Clin Invest, 2001,108(6):917-27.
    [23] Daichou Y, Kurashige S, Hashimoto S, et al. Characteristic cytokine products of Th1 and Th2 cells in hemodialysis patients [J] Nephron, 1999, 83(3): 237-45.
    [24] Minty A, Chalcn P, Deroq JM, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses [J]. Nature, 1993, 362(6417): 248-50.
    [25] Mckenzie AN, Culpepper JA, de Waal Malefyt R, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function [J]. Prol Natl Acad Sci U S A, 1993, 90 (8): 3735-9.
    [26] Defrance T, Carayon P, Billian G, et al. Interleukin-13 is a B cell stimulating factor [J]. J Exp Med, 1994, 179(1): 135-43.
    [27] Morse MA, Lyerly HK, Li Y. The role of IL-13 in generation of dendritic cells in vitro [J]. J Immunother, 1999, 22(6): 506-13.
    [28] Van Den Berg JG, Aten J, Chand MA, et al. Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells [J]. J Am Soc Nephrol, 2000, 11(3): 413-22.
    [29] Burger JA, Quiroga MP, Hartmann E, et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation [J]. Blood, 2009, 113(13):3050-8.
计量
  • 文章访问数:  1162
  • HTML全文浏览量:  31
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-23
  • 修回日期:  2012-12-19
  • 刊出日期:  2013-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭